5 resultados para Tool Path Generation

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated verb generation in children with spina bifida meningomyelocele (SBM; n = 55) and in typically developing controls (n = 32). Participants completed 6 blocks (40 trials each) of a task requiring them to produce a semantically related verb in response to a target noun and an additional 40 trials on which they were simply required to read target nouns aloud. After controlling for reading response time, groups did not differ significantly in verb generation response time or learning. Children with SBM produced more non-verb errors than controls and tended to repeat their mistakes over blocks. Verb generation performance was associated with brain volume measures in participants with SBM. Congenital cerebellar dysmorphology is associated with impaired performance in verb generation accuracy, although not with increased response times to produce verbs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second-generation antipsychotics (SGAs) are increasingly prescribed to treat psychiatric symptoms in pediatric patients infected with HIV. We examined the relationship between prescribed SGAs and physical growth in a cohort of youth with perinatally acquired HIV-1 infection. Pediatric AIDS Clinical Trials Group (PACTG), Protocol 219C (P219C), a multicenter, longitudinal observational study of children and adolescents perinatally exposed to HIV, was conducted from September 2000 until May 2007. The analysis included P219C participants who were perinatally HIV-infected, 3-18 years old, prescribed first SGA for at least 1 month, and had available baseline data prior to starting first SGA. Each participant prescribed an SGA was matched (based on gender, age, Tanner stage, baseline body mass index [BMI] z score) with 1-3 controls without antipsychotic prescriptions. The main outcomes were short-term (approximately 6 months) and long-term (approximately 2 years) changes in BMI z scores from baseline. There were 236 participants in the short-term and 198 in the long-term analysis. In linear regression models, youth with SGA prescriptions had increased BMI z scores relative to youth without antipsychotic prescriptions, for all SGAs (short-term increase = 0.192, p = 0.003; long-term increase = 0.350, p < 0.001), and for risperidone alone (short-term = 0.239, p = 0.002; long-term = 0.360, p = 0.001). Participants receiving both protease inhibitors (PIs) and SGAs showed especially large increases. These findings suggest that growth should be carefully monitored in youth with perinatally acquired HIV who are prescribed SGAs. Future research should investigate the interaction between PIs and SGAs in children and adolescents with perinatally acquired HIV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton therapy is growing increasingly popular due to its superior dose characteristics compared to conventional photon therapy. Protons travel a finite range in the patient body and stop, thereby delivering no dose beyond their range. However, because the range of a proton beam is heavily dependent on the tissue density along its beam path, uncertainties in patient setup position and inherent range calculation can degrade thedose distribution significantly. Despite these challenges that are unique to proton therapy, current management of the uncertainties during treatment planning of proton therapy has been similar to that of conventional photon therapy. The goal of this dissertation research was to develop a treatment planning method and a planevaluation method that address proton-specific issues regarding setup and range uncertainties. Treatment plan designing method adapted to proton therapy: Currently, for proton therapy using a scanning beam delivery system, setup uncertainties are largely accounted for by geometrically expanding a clinical target volume (CTV) to a planning target volume (PTV). However, a PTV alone cannot adequately account for range uncertainties coupled to misaligned patient anatomy in the beam path since it does not account for the change in tissue density. In order to remedy this problem, we proposed a beam-specific PTV (bsPTV) that accounts for the change in tissue density along the beam path due to the uncertainties. Our proposed method was successfully implemented, and its superiority over the conventional PTV was shown through a controlled experiment.. Furthermore, we have shown that the bsPTV concept can be incorporated into beam angle optimization for better target coverage and normal tissue sparing for a selected lung cancer patient. Treatment plan evaluation method adapted to proton therapy: The dose-volume histogram of the clinical target volume (CTV) or any other volumes of interest at the time of planning does not represent the most probable dosimetric outcome of a given plan as it does not include the uncertainties mentioned earlier. Currently, the PTV is used as a surrogate of the CTV’s worst case scenario for target dose estimation. However, because proton dose distributions are subject to change under these uncertainties, the validity of the PTV analysis method is questionable. In order to remedy this problem, we proposed the use of statistical parameters to quantify uncertainties on both the dose-volume histogram and dose distribution directly. The robust plan analysis tool was successfully implemented to compute both the expectation value and its standard deviation of dosimetric parameters of a treatment plan under the uncertainties. For 15 lung cancer patients, the proposed method was used to quantify the dosimetric difference between the nominal situation and its expected value under the uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (