2 resultados para Tissue Temperature

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The central concepts in pressure ulcer risk are exposure to external pressure caused by inactivity and tissue tolerance to pressure, a factor closely related to blood flow. Inactivity measures are effective in predicting pressure ulcer risk. The purpose of the study is to evaluate whether a physiological measure of skin blood flow improves pressure ulcer risk prediction. Skin temperature regularity and self-similarity, as proxy measures of blood flow, and not previously described, may be undefined pressure ulcer risk factors. The specific aims were to determine whether a sample of nursing facility residents at high risk of pressure ulcers classified using the Braden Scale for Pressure Sore Risk© differ from a sample of low risk residents according to (1) exposure to external pressure as measured by resident activity, (2) tissue tolerance to external pressure as measured by skin temperature, and (3) skin temperature fluctuations and recovery in response to a commonly occurring stressor, bathing and additionally whether (4) scores on the Braden Scale mobility subscale score are related to entropy and the spectral exponent. ^ Methods. A two group observational time series design was used to describe activity and skin temperature regularity and self-similarity, calculating entropy and the spectral exponent using detrended fluctuation analysis respectively. Twenty nursing facility residents wore activity and skin temperature monitors for one week. One bathing episode was observed as a commonly occurring stressor for skin temperature.^ Results. Skin temperature multiscale entropy (MSE), F(1, 17) = 5.55, p = .031, the skin temperature spectral exponent, F(1, 17) = 6.19, p = .023, and the activity mean MSE, F(1, 18) = 4.52, p = .048 differentiated the risk groups. The change in skin temperature entropy during bathing was significant, t(16) = 2.55, p = .021, (95% CI, .04-.40). Multiscale entropy for skin temperature was lowest in those who developed pressure ulcers, F(1, 18) = 35.14, p < .001.^ Conclusions. This study supports the tissue tolerance component of the Braden and Bergstrom conceptual framework and shows differences in skin temperature multiscale entropy between pressure ulcer risk categories, pressure ulcer outcome, and during a commonly occurring stressor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined effects of salinity, temperature and cadmium stress on survival and adaptation through cadmium-binding protein (CdBP) accumulation were studied in the grass shrimp, Palaemonetes pugio. In 96-hour bioassays, shrimp were exposed to zero or one of three levels of cadmium, under one of six different salinity (15, 25, or 35$\perthous$) and temperature (20 or 30$\sp\circ$C) regimes. CdBP concentrations were quantified in survivors from the 24 exposure groups. Salinity and temperature did not affect survivorship unless the shrimp were also exposed to cadmium. Grass shrimp were most sensitive to cadmium at low salinity-high temperature, and least sensitive at high salinity-low temperature. The incidence of cadmium-associated black lesions in gill tissue was influenced by salinity and temperature stress. P. pugio produced a 10,000 dalton metallothionein-like CdBP when exposed to at least 0.1 mg Cd$\sp{2+}$/L for 96 hours. Accumulation of CdBP was increased with increases in the exposure cadmium level, increases in temperature and decreases in salinity, independently and in conjunction with one another. Maximum CdBP concentrations occurred in grass shrimp that survived the salinity-temperature-cadmium conditions creating maximum stress as measured by highest mortality, not necessarily in shrimp exposed to the highest cadmium levels. The potential utility of this method as a monitor of physiological stress in estuarine biota inhabiting metal-polluted environments is discussed. ^