14 resultados para Time Rt-pcr

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the functional stability of client oncoproteins, such as STAT3, Raf-1 and Akt, which play a role in the survival of malignant cells. The chaperone function of HSP90 is driven by the binding and hydrolysis of ATP. The geldanamycin analog, 17-AAG, binds to the ATP pocket of HSP90 leading to the degradation of client proteins. However, treatment with 17-AAG results in the elevation of the levels of antiapoptotic proteins HSP70 and HSP27, which may lead to cell death resistance. The increase in HSP70 and HSP27 protein levels is due to the activation of the transcription factor HSF-1 binding to the promoter region of HSP70 and HSP27 genes. HSF-1 binding subsequently promotes HSP70 and HSP27 gene expression. Based on this, I hypothesized that inhibition of transcription/translation of HSP or client proteins would enhance 17-AAG-mediated cytotoxicity. Multiple myeloma (MM) cell lines MM.1S, RPMI-8226, and U266 were used as a model. To test this hypothesis, two different strategies were used. For the first approach, a transcription inhibitor was combined with 17-AAG. The established transcription inhibitor Actinomycin D (Act D), used in the clinic, intercalates into DNA and blocks RNA elongation. Stress inducible (HSP90á, HSP70 and HSP27) and constitutive (HSP90â and HSC70) mRNA and protein levels were measured using real time RT-PCR and immunoblot assays. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the MM cell lines. This induction of HSP mRNA levels was diminished by 0.05 µg/mL Act D for 12 hours in the combination treatment, except for HSP70. At the protein level, Act D abrogated the 17-AAG-mediated induction of all HSP expression levels, including HSP70. Cytotoxic evaluation (Annexin V/7-AAD assay) of Act D in combination with 17-AAG suggested additive or more than additive interactions. For the second strategy, an agent that affected bioenergy production in addition to targeting transcription and translation was used. Since ATP is necessary for the proper folding and maturation of client proteins by HSP90, ATP depletion should lead to a decrease in client protein levels. The transcription and translation inhibitor 8-Chloro-Adenosine (8-Cl-Ado), currently in clinical trials, is metabolized into its cytotoxic form 8-Cl-ATP causing a parallel decrease of the cellular ATP pool. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the three MM cell lines evaluated. In the combination treatment, 10 µM 8-Cl-Ado for 20 hours did not abrogate the induction of HSP mRNA or protein levels. Since cellular bioenergy is necessary for the stabilization of oncoproteins by HSP90, immunoblot assays analyzing for expression levels of client proteins such as STAT3, Raf-1, and Akt were performed. Immunoblot assays detecting for the phosphorylation status of the translation repressor 4E-BP1, whose activity is modulated by upstream kinases sensitive to changes in ATP levels, were also performed. The hypophosphorylated state of 4E-BP1 leads to translation repression. Data indicated that treatment with 17-AAG alone resulted in a minor (<10%) change in STAT3, Raf-1, and Akt protein levels, while no change was observed for 4E-BP1. The combination treatment resulted in more than 50% decrease of the client protein levels and hypophosphorylation of 4E-BP1 in all MM cell lines. Treatment with 8-Cl-Ado alone resulted in less than 30% decrease in client protein levels as well as a decrease in 4E-BP1 phosphorylation. Cytotoxic evaluation of 8-Cl-Ado in combination with 17-AAG resulted in more than additive cytotoxicity when drugs were combined in a sequential manner. In summary, these data suggest that the mechanism-based combination of agents that target transcription, translation, or decrease cellular bioenergy with 17-AAG results in increase cytotoxicity when compared to the single agents. Such combination strategies may be applied in the clinic since these drugs are established chemotherapeutic agents or currently in clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs. METHODS: In in vitro studies, skin fibroblasts obtained from a Tgfbr1 knock-in mouse (TBR1CA; Cre-ER) were transfected with SPARC siRNA. Gene and protein expressions of the Col1a2 and the Ctgf were examined by real-time RT-PCR and Western blotting, respectively. In in vivo studies, C57BL/6 mice were induced for skin and lung fibrosis by bleomycin and followed by SPARC siRNA treatment through subcutaneous injection and intratracheal instillation, respectively. The pathological changes of skin and lungs were assessed by hematoxylin and eosin and Masson's trichrome stains. The expression changes of collagen in the tissues were assessed by real-time RT-PCR and non-crosslinked fibrillar collagen content assays. RESULTS: SPARC siRNA significantly reduced gene and protein expression of collagen type 1 in fibroblasts obtained from the TBR1CA; Cre-ER mouse that was induced for constitutively active TGF-beta receptor I. Skin and lung fibrosis induced by bleomycin was markedly reduced by treatment with SPARC siRNA. The anti-fibrotic effect of SPARC siRNA in vivo was accompanied by an inhibition of Ctgf expression in these same tissues. CONCLUSIONS: Specific inhibition of SPARC effectively reduced fibrotic changes in vitro and in vivo. SPARC inhibition may represent a potential therapeutic approach to fibrotic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine has been implicated to play a role in inflammatory processes associated with asthma. Most notable is adenosine's ability to potentiate mediator release from mast cells. Mast cells are bone marrow derived inflammatory cells that can release mediators that have both immediate and chronic effects on airway constriction and inflammation. Most physiological roles of adenosine are mediated through adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B and A 3. The mechanisms by which adenosine can influence the release of mediators from lung tissue mast cells is not understood due to lack of in vivo models. Mice deficient in the enzyme adenosine deaminase (ADA) have been generated. ADA controls the levels of adenosine in tissues and cells, and consequently, adenosine accumulates in the lungs of ADA-deficient mice. ADA-deficient mice develop features seen in asthmatics, including lung eosinophilia and mucus hypersecretion. In addition, lung tissue mast cell degranulation was associated with elevated adenosine in ADA-deficient lungs and can be prevented by ADA enzyme therapy. We established primary murine lung mast cell cultures, and used real time RT-PCR and immunofluorescence to demonstrate that A 2A, A2B and A3 receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists and A3 receptor deficient (A3−/−) mast cells suggested that activation of A3 receptors could induce mast cell mediator release in vitro. Furthermore, this mediator release was associated with increases in intracellular Ca++ that appeared to be mediated through a Gi and PI3K pathway. In addition, nebulized A3 receptor agonist directly induced lung mast cell degranulation in wild type mice while having no effect in A3−/− mice. These results demonstrate that the A3 receptor plays an important role in adenosine mediated murine lung mast cell degranulation. Therefore, the A3 adenosine receptor and its signaling pathways may represent novel therapeutic targets for the treatment and prevention of asthma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic growth factors play important roles in regulating blood cell growth and development in vivo. In this work, we investigated the signaling mechanisms of two growth factors with clinical significance, erythropoietin (Epo) and granulocyte colony-stimulating factor (G-CSF). Epo is essential for the survival, proliferation and differentiation of red blood cell progenitors, while G-CSF plays an important role in controlling mature neutrophil production. To identify which amino acid(s) and/or motif in EpoR is responsible for cell survival, wild type or mutant EpoR isoforms were transfected into the growth factor-dependent 32D cell line. Proliferation and apoptosis assays demonstrated that an EpoR isoform that lacks intracellular tyrosine residues and is truncated after 321 amino acids in the cytoplasmic tail (EpoR 1-321) mediates Epo-dependent cell survival. Furthermore, in absence of fetal calf serum (FCS), Epo signaling through wild type or mutant receptors supported anti-apoptosis, but not proliferation during 72 hours in response to Epo. To investigate the signaling pathway by which EpoR regulates cell survival, a dominant negative Stat5b (dnStat5b) isoform was generated and coexpressed with EpoR in stable cell lines. Expression of dnStat5b causes a significant induction of apoptosis in the presence of Epo in cells expressing EpoR 1-321, indicating that Stat5 is essential for survival signaling through tyrosine independent sequences in the EpoR. In a second project to investigate G-CSF signaling, we studied mechanisms by which G-CSF regulates the expression of PU.1, an important transcription factor in myeloid and B cell development. We demonstrated, by immunoblot and real time RT-PCR, that PU.1 is induced by G-CSF ex vivo as well as in vivo. To test whether G-CSF signaling through Stat3 is required for PU.1 regulation, the upstream region of the PU.1 gene was analyzed for potential Stat3 binding motifs. Four potential sites were identified; chromatin immunoprecipitations demonstrated that G-CSF activated Stat3 binds to 3 of the 4 binding motifs. In addition, PU.1 induction by G-CSF was completely abrogated in bone marrow from hematopoietic conditional Stat3 knockout mice. These results indicate an important role for Stat3 in G-CSF-dependent PU.1 gene regulation. Collectively, our works demonstrate that Stat protein play important and diverse roles in hematopoietic growth factor signaling. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Can the early identification of the species of staphylococcus responsible for infection by the use of Real Time PCR technology influence the approach to the treatment of these infections? ^ This study was a retrospective cohort study in which two groups of patients were compared. The first group, ‘Physician Aware’ consisted of patients in whom physicians were informed of specific staphylococcal species and antibiotic sensitivity (using RT-PCR) at the time of notification of the gram stain. The second group, ‘Physician Unaware’ consisted of patients in whom treating physicians received the same information 24–72 hours later as a result of blood culture and antibiotic sensitivity determination. ^ The approach to treatment was compared between ‘Physician Aware’ and ‘Physician Unaware’ groups for three different microbiological diagnoses—namely MRSA, MSSA and no-SA (or coagulase negative Staphylococcus). ^ For a diagnosis of MRSA, the mean time interval to the initiation of Vancomycin therapy was 1.08 hours in the ‘Physician Aware’ group as compared to 5.84 hours in the ‘Physician Unaware’ group (p=0.34). ^ For a diagnosis of MSSA, the mean time interval to the initiation of specific anti-MSSA therapy with Nafcillin was 5.18 hours in the ‘Physician Aware’ group as compared to 49.8 hours in the ‘Physician Unaware’ group (p=0.007). Also, for the same diagnosis, the mean duration of empiric therapy in the ‘Physician Aware’ group was 19.68 hours as compared to 80.75 hours in the ‘Physician Unaware’ group (p=0.003) ^ For a diagnosis of no-SA or coagulase negative staphylococcus, the mean duration of empiric therapy was 35.65 hours in the ‘Physician Aware’ group as compared to 44.38 hours in the ‘Physician Unaware’ group (p=0.07). However, when treatment was considered a categorical variable and after exclusion of all cases where anti-MRS therapy was used for unrelated conditions, only 20 of 72 cases in the ‘Physician Aware’ group received treatment as compared to 48 of 106 cases in the ‘Physician Unaware’ group. ^ Conclusions. Earlier diagnosis of MRSA may not alter final treatment outcomes. However, earlier identification may lead to the earlier institution of measures to limit the spread of infection. The early diagnosis of MSSA infection, does lead to treatment with specific antibiotic therapy at an earlier stage of treatment. Also, the duration of empiric therapy is greatly reduced by early diagnosis. The early diagnosis of coagulase negative staphylococcal infection leads to a lower rate of unnecessary treatment for these infections as they are commonly considered contaminants. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Delineating the mechanism(s) of BDNF/TrkB mediated proliferation in Neuroblastoma Timothy Christopher Graham, B.S. Supervisory Professor: Patrick Zweidler-McKay, MD/PhD Neuroblastoma is the most common extra-cranial solid tumor in children, arising from neural crest precursor cells. The neurotrophin receptors (TrkA/B/C) have been implicated as important prognostic markers, linking the biology of the tumor to patient outcome. High expression of TrkA and TrkC receptors have been linked to favorable biological features and high patient survival, while TrkB is expressed in unfavorable, aggressive tumors. Several studies suggest that high levels and activation of TrkB by its ligand brain-derived neurotrophic factor (BDNF) stimulates tumor cell survival, proliferation, and chemoresistance. However, little is known about the molecular mechanisms that regulate proliferation. The TrkB signaling pathway in neuroblastoma cells has been difficult to evaluate due to the loss of TrkB expression when the cells are used in vitro. Here we determined the role of proximal signaling pathways downstream of TrkB on neuroblastoma proliferation. By analyzing a panel of neuroblastoma cell lines, we found that the SMS-KCN cells express detectable levels of protein and mRNA levels of TrkB as analyzed by western, RT-PCR, and surface expression by flow cytometry. By the addition of exogenous human recombinant BDNF, we showed that activation of TrkB is important in the proliferation of the cells and can be repressed by inhibiting TrkB kinase function. By BDNF stimulation and use of specific kinase inhibitors, the common pathways involving PLCg, PI3K/AKT, and MAPK were initially investigated in addition to PI3K/MTOR and FYN pathways. We demonstrate for the first time that Fyn plays a critical role in TrkB mediated proliferation in neuroblastoma. Constitutively active and over-expressed Fyn reduced neuroblastoma proliferation, as measured by PCNA expression. Knockdown of Fyn by shRNA was shown to cooperate with activated TrkB for an enhanced proliferative response. Although TrkB activation has been implicated in the proliferation of neuroblastoma cells, little is known about its effects on cell cycle regulation. Protein levels of pRB, CDK2, CDK4, CDC25A, cyclin D1, and cyclin E were analyzed following BDNF stimulation. We found that BDNF mediated activation of TrkB induces multiple common proximal signaling pathways including the anti-proliferative Fyn pathway and drives cell cycle machinery to enhance the proliferation of neuroblastoma cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Pancreatic cancer is the fourth leading cause of cancer-related death among males and females in the United States. Sel-1-like (SEL1L) is a putative tumor suppressor gene that is downregulated in a significant proportion of human pancreatic ductal adenocarcinoma (PDAC). It was hypothesized that SEL1L expression could be down-modulated by somatic mutation, loss of heterozygosity (LOH), CpG island hypermethylation and/or aberrantly expressed microRNAs (miRNAs). Material and methods: In 42 PDAC tumors, the SEL1L coding region was amplified using reverse transcription polymerase chain reaction (RT-PCR), and analyzed by agarose gel electrophoresis and sequenced to search for mutations. Using fluorescent fragment analysis, two intragenic microsatellites in the SEL1L gene region were examined to detect LOH in a total of 73 pairs of PDAC tumors and normal-appearing adjacent tissues. Bisulfite DNA sequencing was performed to determine the methylation status of the SEL1L promoter in 41 PDAC tumors and 6 PDAC cell lines. Using real-time quantitative PCR, the expression levels of SEL1L mRNA and 7 aberrantly upregulated miRNAs that potentially target SEL1L were assessed in 42 PDAC tumor and normal pairs. Statistical methods were applied to evaluate the correlation between SEL1L mRNA and the miRNAs. Further the interaction was determined by functional analysis using a molecular biological approach. Results: No mutations were detected in the SEL1L coding region. More than 50% of the samples displayed abnormally alternate or aberrant spliced transcripts of SEL1L. About 14.5% of the tumors displayed LOH at the CAR/CAL microsatellite locus and 10.7% at the RepIN20 microsatellite locus. However, the presence of LOH did not show significant association with SEL1L downregulation. No methylation was observed in the SEL1L promoter. Statistical analysis showed that SEL1L mRNA expression levels significantly and inversely correlated with the expression of hsa-mir-143, hsa-mir-155, and hsa-mir-223. Functional analysis indicated that hsa-mir-155 acted as a suppressor of SEL1L in PL18 and MDAPanc3 PDAC cell lines. Discussion: Evidence from these studies suggested that SEL1L was possibly downregulated by aberrantly upregulated miRNAs in PDAC. Future studies should be directed towards developing a better understanding of the mechanisms for generation of aberrant SEL1L transcripts, and further analysis of miRNAs that may downregulate SEL1L.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

HIV can enter the body through Langerhans cells, dendritic cells, and macrophages in skin mucosa, and spreads by lysis or by syncytia. Since UVL induces of HIV-LTR in transgenic mice mid in cell lines in vitro, we hypothesized that UVB may affect HIV in people and may affect HIV in T cells in relation to dose, apoptosis, and cytokine expression. To determine whether HIV is induced by UVL in humans, a clinical study of HIV+ patients with psoriasis or pruritus was conducted during six weeks of UVB phototherapy, Controls were HIV-psoriasis patients receiving UVB and HIV+ KS subjects without UVB.Blood and skin biopsy specimens were collected at baseline, weeks 2 and 6, and 4 weeks after UVL. AIDS-related skin diseases showed unique cytokine profiles in skin and serum at baseline. In patients and controls on phototherapy, we observed the following: (1) CD4+ and CD8+ T cell numbers are not significantly altered during phototherapy, (2) p24 antigen levels, and also HIV plasma levels increase in patients not on antiviral therapy, (3) HIV-RNA levels in serum or plasma. (viral load) can either increase or decrease depending on the patient's initial viral load, presence of antivirals, and skin type, (4) HIV-RNA levels in the periphery are inversely correlated to serum IL-10 and (5) HIV+ cell in skin increase after UVL at 2 weeks by RT-PCR in situ hybridization mid we negatively correlated with peripheral load. To understand the mechanisms of UVB mediated HIV transcription, we treated Jurkat T cell lines stably transfected with an HIV-LTR-luciferase plasmid only or additionally with tat-SV-40 early promoter with UVB (2 J/m2 to 200 J/m2), 50 to 200 ng/ml rhIL-10, and 10 μg/ml PHA as control. HIV promoter activity was measured by luciferase normalized to protein. Time points up to 72 hours were analyzed for HIV-LTR activation. HIV-LTR activation had the following properties: (1) requires the presence of Tat, (2) occurs at 24 hours, and (3) is UVB dose dependent. Changes in viability by MTS (3-(4,5-dimethyhhiazol-2-y1)-5-(3-carboxymethoxyphonyl)-2-(4-sulfophenyl)-2H-tetrazolium) mixed with PMS (phenazine methosulfate) solution and apoptosis by propidium iodide and annexin V using flow cytometry (FC) were seen in irradiated Jurkat cells. We determined that (1) rhIL-10 moderately decreased HIV-LTR activation if given before radiation and greatly decreases it when given after UVB, (2) HIV-LTR activation was low at doses of greater than 70 J/m2, compared to activation at 50 J/m2. (Abstract shortened by UMI.)^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sry and Wnt4 cDNAs were individually introduced into the ubiquitously-expressed Rosa26 ( R26) locus by gene targeting in embryonic stem (ES) cells to create a conditional gene expression system in mice. In the targeted alleles, expression of these cDNAs should be blocked by a neomycin resistance selection cassette that is flanked by loxP sites. Transgene expression should be activated after the blocking cassette is deleted by Cre recombinase. ^ To test this conditional expression system, I have bred R26-stop- Sry and R26-stop-Wnt4 heterozygotes with a MisRII-Cre mouse line that expresses Cre in the gonads of both sexes. Analysis of these two types of bigenic heterozygotes indicated that their gonads developed normally like those of wild types. However, one XX R26-Sry/R26-Sry; MisR2-Cre/+ showed epididymis-like structures resembling those of males. In contrast, only normal phenotypes were observed in XY R26-Wnt4/R26-Wnt4; MisR2-Cre /+ mice. To interpret these results, I have tested for Cre recombinase activity by Southern blot and transcription of the Sry and Wnt4 transgenes by RT-PCR. Results showed that bigenic mutants had insufficient activation of the transgenes in their gonads at E12.5 and E13.5. Therefore, the failure to observe mutant phenotypes may have resulted from low activity of MisR2-Cre recombination at the appropriate time. ^ Col2a1-Cre transgenic mice express Cre in differentiating chondrocytes. R26-Wnt4; Col2a1-Cre bigenic heterozygous mice were found to exhibit a dramatic alteration in growth presumably caused by Wnt4 overexpression during chondrogenesis. R26-Wnt4; Col2a1-Cre mice exhibited dwarfism beginning approximately 10 days after birth. In addition, they also had craniofacial abnormalities, and had delayed ossification of the lumbar vertebrate and pelvic bones. Histological analysis of the growth plates of R26-Wnt4; Col2a1-Cre mice revealed less structural organization and a delay in onset of the primary and secondary ossification centers. Molecular studies confirmed that overexpression of Wnt4 causes decreased proliferation and early maturation of chondrocytes. In addition, R26-Wnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF), suggesting that defects in vascularization may contribute to the dwarf phenotype. Finally, 9-month-old R26-Wnt4; Col2a1-Cre mice had significantly more fat cells in the marrow cavities of their metaphysis long bones, implying that long-term overexpression of Wnt4may cause bone marrow pathologies. In conclusion, Wnt4 was activated by Col2a1-Cre recombinase and was overexpressed in the growth plate, resulting in aberrant proliferation and differentiation of chondrocytes, and ultimately leads to dwarfism in mice. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most studies of p53 function have focused on genes transactivated by p53. It is less widely appreciated that p53 can repress target genes to affect a particular cellular response. There is evidence that repression is important for p53-induced apoptosis and cell cycle arrest. It is less clear if repression is important for other p53 functions. A comprehensive knowledge of the genes repressed by p53 and the cellular processes they affect is currently lacking. We used an expression profiling strategy to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes represented on the Affymetrix U133A microarray were repressed more than two fold (p ≤ 0.05) by p53. An objective assessment of array data quality was carried out using RT-PCR of 20 randomly selected genes. We estimate a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis was used to identify cellular processes potentially affected by p53-mediated repression. Cell cycle regulatory genes exhibited significant enrichment (p ≤ 5E-28) within the repressed targets. Several of these genes are repressed in a p53-dependent manner following DNA damage, but preceding cell cycle arrest. These findings identify novel p53-repressed targets and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g., p21), but also the repression of targets that act at each phase of the cell cycle. The mechanism of repression of this set of p53 targets was investigated. Most of the repressed genes identified here do not harbor consensus p53 DNA binding sites but do contain binding sites for E2F transcription factors. We demonstrate a role for E2F/RB repressor complexes in our system. Importantly, p53 is found at the promoter of CDC25A. CDC25A protein is rapidly degraded in response to DNA damage. Our group has demonstrated for the first time that CDC25A is also repressed at the transcript level by p53. This work has important implications for understanding the DNA damage cell cycle checkpoint response and the link between E2F/RB complexes and p53 in the repression of target genes. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoids are Vitamin A derivatives that are effective chemopreventative and chemotherapeutic agents for head and neck squamous cell carcinomas (HNSCC). Despite the wide application of retinoids in cancer treatment, the mechanism by which retinoids inhibit head and neck squamous cell carcinomas is not completely understood. While in vitro models show that drugs affect cell proliferation and differentiation, in vivo models, such as tumor xenografts in nude mice drugs affect more complex parameters such as extracellular matrix formation, angiogenesis and inflammation. Therefore, we studied the effects of retinoids on the growth of the 22B HNSCC tumors using a xenograft model. In this system, retinoids had no effect on tumor cell differentiation but caused invasion of the tumor by inflammatory cells. Retinoid induced inflammation lead to tumor cell death and tumor regression. Therefore, we hypothesized that retinoids stimulated the 22B HNSCC xenografts to produce a pro-inflammatory signal such as chemokines that in turn activated host inflammatory responses. ^ We used real time quantitative RT-PCR to measure cytokine and chemokine expression in retinoid treated tumors. Treatment of tumors with an RAR-specific retinoid, LGD1550, had no effect on the expression of TNFα, IL-1α, GROα, IP-10, Rantes, MCP-1 and MIP-1α but induced IL-8 mRNA 5-fold. We further characterized the retinoid effect on IL-8 expression on the 22B HNSCC and 1483 HNSCC cells in vitro. Retinoids increased IL-8 expression and enhanced TNFα-dependent IL-8 induction. In addition, retinoids increased the basal and TNFα-dependent expression of MCP-1 but decreased the basal and TNFα dependent expression of IP-10. The effect of retinoids on IL-8 and MCP-1 expression was very rapid with increased levels of mRNA detected within 1–2 hours. This effect did not require new protein synthesis and did not result from mRNA stabilization. Both RAR and RXR ligands increased IL-8 expression whereas only RAR ligands activated MCP-1 expression. ^ We identified a functional retinoid response element in the IL-8 promoter that was located adjacent to the C/EBP-NFkB response element. TNFα treatment of the 22B cells caused rapid, transient and selective acetylation of regions of the IL-8 promoter associated with the NFkB response element. Co-treatment of the cells with retinoids plus TNF increased the acetylation of chromatin in this region without altering the kinetics of acetylation. These results demonstrate that ligand activated retinoid receptors can cooperate with NFkB in histone acetylation and chromatin remodeling. We believe that in certain HNSCC tumors this cooperation and the resulting enhancement of IL-8 expression can induce an inflammatory response that leads to tumor regression. We believe that the induction of inflammation in susceptible tumors, possibly coupled with cytotoxic interventions may be an important component in the use of retinoids to treat human squamous cancers. ^