6 resultados para Time Conservation Element
em DigitalCommons@The Texas Medical Center
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
CREB [CRE (cAMP-response element)-binding protein] is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA (retinoic acid) rapidly activates CREB without using RARs (RA receptors) or RXRs (retinoid X receptors) in NHTBE cells (normal human tracheobronchial epithelial cells). However, little is known about the role of RA in the physiological regulation of CREB expression in the early mucous differentiation of NHTBE cells. In the present study, we report that RA up-regulates CREB gene expression and that, using 5'-serial deletion promoter analysis and mutagenesis analyses, two Sp1 (specificity protein 1)-binding sites located at nt -217 and -150, which flank the transcription initiation site, are essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nt -119 and -98 contributed to basal promoter activity. Interestingly, RA also up-regulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using siRNA (small interfering RNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA up-regulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in up-regulating human CREB gene expression. This result implies that co-operation of these two transcription factors plays a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
The urokinase-type plasminogen activator receptor (u-PAR) promotes extracellular matrix degradation, invasion and metastasis. A first objective of this dissertation was to identify cis-elements and trans-acting factors activating u-PAR gene expression through a previously footprinted (–148/–124) promoter region. Mobility shifting experiments on nuclear extracts of a high u-PAR-expressing colon cancer cell line (RKO) indicated Sp1, Sp3 and a factor similar to, but distinct from, AP-2α bound to an oligonucleotide spanning –152/–135. Mutations preventing the binding of the AP-2α-related factor reduced u-PAR promoter activity. In RKO, the expression of a dominant negative AP-2 (AP-2αB) diminished u-PAR promoter activity, protein and u-PAR mediated laminin degradation. Conversely, u-PAR promoter activity in low u-PAR-expressing GEO cells was increased by AP-2αA expression. PMA treatment, which induces u-PAR expression, caused an increased amount of the AP-2α-related factor-containing complex in GEO, and mutations preventing AP-2α-like and Sp1/Sp3 binding reduced the u-PAR promoter stimulation by PMA. In resected colon cancers, u-PAR protein amounts were related to the amount of the AP-2α-related factor-containing complex. In conclusion, constitutive and PMA- inducible u-PAR gene expression and -proteolysis are mediated partly through transactivation via a promoter sequence (–152/435) bound with an AP-2α-related factor and Sp1/Sp3. ^ A second interest of this dissertation was to determine if a constitutively active Src regulates the transcription of the u-PAR gene, since c-src expression increases invasion in colon cancer. Increased u-PAR protein and laminin degradation paralleling elevated Src activity was evident in SW480 colon cancer cells stably expressing a constitutively active Src (Y- c-src527F). Nuclear run-on experiments indicated that this was due largely to transcriptional activation. While transient transfection of SW480 cells with Y-c-src527F induced a u-PAR-CAT-reporter, mutations preventing Sp1-binding to promoter region –152/435 abolished this induction. Mobility shift assays revealed increased Sp1 binding to region –152/135 with nuclear extracts of Src-transfected SW480 cells. Finally, the amounts of endogenous u-PAR in resected colon cancers significantly correlated with Src-activity. These data suggest that u-PAR gene expression and proteolysis are regulated by Src, this requiring the promoter region (–152/–135) bound with Sp1, thus, demonstrating for the first time that transcription factor Sp1 is a downstream effector of Src. ^
Resumo:
Background. Various aspects of sustainability have taken root in the hospital environment; however, decisions to pursue sustainable practices within the framework of a master plan are not fully developed in National Cancer Institute (NCI) -designated cancer centers and subscribing institutions to the Practice Greenhealth (PGH) listserv.^ Methods. This cross sectional study was designed to identify the organizational characteristics each study group pursed to implement sustainability practices, describe the barriers they encountered and reasons behind their choices for undertaking certain sustainability practices. A web-based questionnaire was pilot tested, and then sent out to 64 NCI-designated cancer centers and 1638 subscribing institutions to the PGH listserv.^ Results. Complete responses were received from 39 NCI-designated cancer centers and 58 subscribing institutions to the PGH listserv. NCI-designated cancer centers reported greater progress in integrating sustainability criteria into design and construction projects than hospitals of institutions subscribing to the PHG listserv (p-value = <0.05). Statistically significant differences were also identified between these two study groups in undertaking work life options, conducting energy usage assessments, developing energy conservation and optimization plans, implementing solid waste and hazardous waste minimization programs, using energy efficient vehicles and reporting sustainability progress to external stakeholders. NCI-designated cancer centers were further along in implementing these programs (p-value = <0.05). In comparing the self-identified NCI-designated cancer centers to centers that indicated they were both and NCI and PGH, the later had made greater progress in using their collective buying power to pursue sustainable purchasing practices within the medical community (p-value = <0.05). In both study groups, recycling programs were well developed.^ Conclusions. Employee involvement was viewed as the most important reason for both study groups to pursue recycling initiatives and incorporated environmental criteria into purchasing decisions. A written sustainability commitment did not readily translate into a high percentage that had developed a sustainability master plan. Coordination of sustainability programs through a designated sustainability professional was not being undertaken by a large number of institutions within each study group. This may be due to the current economic downturn or management's attention to the emerging health care legislation being debated in congress. ^ Lifecycle assessments, an element of a carbon footprint, are seen as emerging areas of opportunity for health care institutions that can be used to evaluate the total lifecycle costs of products and services.^
Resumo:
Regulation of cytoplasmic deadenylation, the first step in mRNA turnover, has direct impact on the fate of gene expression. AU-rich elements (AREs) found in the 3′ untranslated regions of many labile mRNAs are the most common RNA-destabilizing elements known in mammalian cells. Based on their sequence features and functional properties, AREs can be divided into three classes. Class I or class III ARE directs synchronous deadenylation, whereas class II ARE directs asynchronous deadenylation with the formation of poly(A)-intermediates. Through systematic mutagenesis study, we found that a cluster of five or six copies of AUUUA motifs forming various degrees of reiteration is the key feature dictating the choice between asynchronous versus synchronous deadenylation. A 20–30 nt AU-rich sequence immediately 5 ′ to this cluster of AUUUA motifs can greatly enhance its destabilizing ability and is an integral part of the AREs. These two features are the defining characteristics of class II AREs. ^ To better understand the decay mechanism of AREs, current methods have several limitations. Taking the advantage of tetracycline-regulated promoter, we developed a new transcriptional pulse strategy, Tet-system. By controlling the time and the amount of Tet addition, a pulse of RNA could be generated. Using this new system, we showed that AREs function in both growth- and density-arrested cells. The new strategy offers for the first time an opportunity to investigate control of mRNA deadenylation and decay kinetics in mammalian cells that exhibit physiologically relevant conditions. ^ As a member of heterogeneous nuclear RNA-binding protein, hnRNP D 0/AUF1 displays specific affinities for ARE sequences in vitro . But its in vivo function in ARE-mediated mRNA decay is unclear. AUF1/hnRNP D0 is composed of at least four isoforms derived by alternative RNA splicing. Each isoform exhibits different affinity for ARE sequence in vitro. Here, we examined in vivo effect of AUF1s/hnRNP D0s on degradation of ARE-containing mRNA. Our results showed that all four isoforms exhibit various RNA stabilizing effects in NIH3T3 cells, which are positively correlated with their binding affinities for ARE sequences. Further experiments indicated that AUF1/hnRNP D0 has a general role in modulating the stability of cytoplasmic mRNAs in mammalian cells. ^