1 resultado para Thyroiditis
em DigitalCommons@The Texas Medical Center
Resumo:
Evidence suggests that sex-based differences in immune function may predispose women to numerous hypersensitivity conditions such as Systemic lupus erythematosus (SLE), Hashimoto's thyroiditis and asthma. To date, the exact mechanisms of sexual dimorphism in immunity are not fully characterized but sex hormones such as 17-β estradiol (E2) and progesterone (PR) are believed to be involved. Since E2 and PR may modulate the production of critical regulatory cytokines, we sought to characterize their effects on the in vitro human type-1/type-2 cytokine balance. We hypothesized that E2 and/or PR vary cytokine production and influence costimulatory molecule expression and apoptosis. We first described the effect of E2 and/or PR on type-1 (IFN-γ and IL-12) and type-2 (IL-4 and IL-10) cytokine production by human peripheral blood mononuclear cells (PBMC) treated with various T-lymphocyte and monocyte stimuli. E2 and/or PR were each used at concentrations similar to those found at the maternal-fetal interface during pregnancy. At this dose, E2 increased IFN-γ and IL-12 production and PR decreased IFN-γ production and tended to increase IL-4 production. Furthermore, the combination of E2+PR decreased IL-12 production. This suggests that E2 shifts the type-1/type-2 cytokine balance towards a type-1 response and that PR and E2+PR shift the balance towards a type-2 response. Next, we used intracellular cytokine detection to demonstrate that E2 and/or PR are capable of altering cytokine production of CD3+ T-cells and the CD3+CD4+ and CD3+CD8+ subsets. In addition, we used the H9 T-lymphocyte cell line and the THP-1 monocyte cell line to show that E2 and/or PR can induce cytokine effects in both T-cells and monocytes independent of their interaction. Lastly, we determined the effect of E2 and/or PR on costimulatory molecule expression and apoptosis as potential mechanisms for the cytokine-induced alterations. E2 increased and PR decreased CD80 expression on THP-1 cells and PR and E2+PR decreased CD28 expression in PBMC and Jurkat cells. Furthermore, E2, PR and E2+PR increased Fas-mediated apoptosis in Jurkat cells and E2 increased FasL expression on THP-1 cells. Thus, E2 and/or PR may alter the cytokine balance by modulating the CD28/CD80 costimulatory pathway and apoptosis. ^