3 resultados para Thyroid-hormone Secretion
em DigitalCommons@The Texas Medical Center
Resumo:
Gastrin-releasing peptide (GRP) and other bombesin-like peptides stimulate hormone secretion and cell proliferation by binding to specific G-protein-coupled receptors. Three studies were performed to identify potential mechanisms involved in GRP/bombesin receptor regulation.^ Although bombesin receptors are localized throughout the gastrointestinal tract, few gastrointestinal cell lines are available to study bombesin action. In the first study, the binding and function of bombesin receptors in the human HuTu-80 duodenal cancer cell line were characterized. ($\sp{125}$I-Tyr$\sp4$) bombesin bound with high affinity to a GRP-preferring receptor. Bombesin treatment increased IP$\sb3$ production, but had no effect on cell proliferation. Similar processing of ($\sp{125}$I-Tyr$\sp4$) bombesin and of GRP-receptors was observed in HuTu-80 cells and Swiss 3T3 fibroblasts, a cell line which mitogenically responds to bombesin. Therefore, the lack of a bombesin mitogenic effect in HuTu-80 cells is not due to unusual processing of ($\sp{125}$I-Tyr$\sp4$) bombesin or rapid GRP-receptor down-regulation.^ In the second study, a bombesin antagonist was developed to study the processing and regulatory events after antagonist binding. As previously shown, receptor bound agonist, ($\sp{125}$I-Tyr$\sp4$) bombesin, was rapidly internalized and degraded in chloroquine-sensitive compartments. Interestingly, receptor-bound antagonist, ($\sp{125}$I-D-Tyr$\sp6$) bombesin(6-13)PA was not internalized, but degraded at the cell-surface. In contrast to bombesin, (D-Tyr$\sp6$) bombesin(6-13)PA treatment did not cause receptor internalization. Together these results demonstrate that receptor regulation and receptor-mediated processing of antagonist is different from that of agonist.^ Bombesin receptors undergo acute desensitization. By analogy to other G-protein-coupled receptors, a potential desensitization mechanism may involve receptor phosphorylation. In the final study, $\sp{32}$P-labelled Swiss 3T3 fibroblasts and CHO-mBR1 cells were treated with bombesin and the GRP-receptor was immunoprecipitated. In both cell lines, bombesin treatment markedly stimulated GRP-receptor phosphorylation. Furthermore, bombesin-stimulated GRP-receptor phosphorylation occurred within the same time period as bombesin-stimulated desensitization, demonstrating that these two processes are correlated.^ In conclusion, these studies of GRP-receptor regulation further our understanding of bombesin action and provide insight into G-protein-coupled receptor regulation in general. ^
Resumo:
Retinoid therapy has been successful for the treatment of skin squamous cell carcinoma (SCC). A suppression of the predominant retinoid X receptor expressed in skin, retinoid X receptor α (RXRα), has been reported in skin SCC. These observations have led to the hypothesis that retinoid receptor loss contributes to the tumorigenic phenotype of epithelial cancers. To test this hypothesis, the RXRα gene was mapped in order to generate a targeting construct. Additionally the transcriptional regulation of the human RXRα a gene in keratinocytes was characterized after identifying the transcription initiation sites, the promoter, and enhancer regions of this gene. The structure is highly conserved between human and mouse. A nontumorigenic human skin-derived cell line called near diploid immortalized keratinocytes (NIKS) has the advantage of growing as organotypic raft cultures, under physiological conditions closely resembling in-vivo squamous stratification. We have exploited the raft culture technique to develop an in-vitro model for skin SCC progression that includes the NIKS cells, HaCaT cells, a premalignant cell line, and SRB 12-p9 cells, a tumorigenic SCC skin cell line. The differentiation, proliferation and nuclear receptor ligand response characteristics of this system were studied and significant and novel results were obtained. RXRs are obligate heterodimerization partners with many of the nuclear hormone receptors, including retinoic acid receptors (RARs), vitamin D3 receptors (VDR), thyroid hormone receptors (T3 R) and peroxisome proliferator activate receptors (PPARs), which are all known to be active in skin. Treatment of the three cell lines in raft culture with the RXR specific ligand BMS649, BMS961 (RARγ-specific), vitamin D3 (VDR ligand), thryoid hormone (T3R ligand) and clofibrate (PPARa ligand), and the combination of BMS649 with each of the 4 receptor partner ligands, resulted in distinct effects on differentiation, proliferation and apoptosis. The effects of activation of RXRs in each of the four-receptor pathways; in the context of skin SCC progression, with an emphasis on the VDR/RXR pathway, are discussed. These studies will lead to a better understanding of RXRα action in human skin and will help determine its role in SCC tumorigenesis, as well as its potential as a target for the prevention, treatment, and control of skin cancer. ^
Resumo:
The role of adrenal and thyroid hormones on the development of chief and parietal cells was studied in the rat. Administration of corticosterone or thyroxine in the first and second postnatal weeks resulted in the precocious appearance of pepsinogen in the oxyntic gland mucosa and an increase in basal acid output. When pups were adrenalectomized or made hypothyroid, both pepsinogen and basal acid secretion were lowed. Corticosterone injection increased pepsinogen content and acid secretion to levels higher than those of control in hypothyroid and adrenalectomized rats while thyroxine had no such effect in adrenalectomized rats. Morphologically, chief cells responded to corticosterone or thyroxine with increases in both zymogen granules and RER. Chief cells, however, contained less zymogen granules and RER in adrenalectomized and hypothyroid rats. Corticosterone was effective in restoring the normal morphological appearance of chief cells in the hypothyroid rats while thyroxine had no effect in the adrenalectomized rats. In response to corticosterone or thyroxine, parietal cells in normal animals appeared to contain more mitochondria, tubulovesicles and intracellular canaliculi than those of control. Unlike chief cells, parietal cells retained normal ultrastructure in the absence of adrenal and thyroid hormones. These data indicate that (1) corticosterone is necessary for the functional and morphological development of chief cells; (2) the morphological development of parietal cells does not appear to depend upon corticosterone, (3) the effect of thyroxine on the development of chief and parietal cells is due to corticosterone. ^