4 resultados para Three-phase line analysis
em DigitalCommons@The Texas Medical Center
Resumo:
Astronauts performing extravehicular activities (EVA) are at risk for occupational hazards due to a hypobaric environment, in particular Decompression Sickness (DCS). DCS results from nitrogen gas bubble formation in body tissues and venous blood. Denitrogenation achieved through lengthy staged decompression protocols has been the mainstay of prevention of DCS in space. Due to the greater number and duration of EVAs scheduled for construction and maintenance of the International Space Station, more efficient alternatives to accomplish missions without compromising astronaut safety are desirable. ^ This multi-center, multi-phase study (NASA-Prebreathe Reduction Protocol study, or PRP) was designed to identify a shorter denitrogenation protocol that can be implemented before an EVA, based on the combination of adynamia and exercise enhanced oxygen prebreathe. Human volunteers recruited at three sites (Texas, North Carolina and Canada) underwent three different combinations (“PRP phases”) of intense and light exercise prior to decompression in an altitude chamber. The outcome variables were detection of venous gas embolism (VGE) by precordial Doppler ultrasound, and clinical manifestations of DCS. Independent variables included age, gender, body mass index, oxygen consumption peak, peak heart rate, and PRP phase. Data analysis was performed both by pooling results from all study sites, and by examining each site separately. ^ Ten percent of the subjects developed DCS and 20% showed evidence of high grade VGE. No cases of DCS occurred in one particular PRP phase with use of the combination of dual-cycle ergometry (10 minutes at 75% of VO2 peak) plus 24 minutes of light EVA exercise (p = 0.04). No significant effects were found for the remaining independent variables on the occurrence of DCS. High grade VGE showed a strong correlation with subsequent development of DCS (sensitivity, 88.2%; specificity, 87.2%). In the presence of high grade VGE, the relative risk for DCS ranged from 7.52 to 35.0. ^ In summary, a good safety level can be achieved with exercise-enhanced oxygen denitrogenation that can be generalized to the astronaut population. Exercise is beneficial in preventing DCS if a specific schedule is followed, with an individualized VO2 prescription that provides a safety level that can then be applied to space operations. Furthermore, VGE Doppler detection is a useful clinical tool for prediction of altitude DCS. Because of the small number of high grade VGE episodes, the identification of a high probability DCS situation based on the presence of high grade VGE seems justified in astronauts. ^
Resumo:
Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^
Resumo:
There have been numerous reports over the past several years on the ability of vitamin A analogs (retinoids) to modulate cell proliferation, malignant transformation, morphogenesis, and differentiation in a wide variety of cell types and organisms. Two families of nuclear retinoid-inducible, trans-acting, transcription-enhancing receptors that bear strong DNA sequence homology to thyroid and steroid hormone receptors have recently been discovered. The retinoic acid receptors (RARs) and retinoid X receptors (RXRs) each have at least three types designated $\alpha,$ $\beta,$ and $\gamma,$ which are encoded by separate genes and expressed in a tissue and cell type-specific manner. We have been interested in the mechanism by which retinoids inhibit tumor cell proliferation and induce differentiation. As a model system we have employed several murine melanoma cell lines (S91-C2, K1735P, and B16-F1), which are sensitive to the growth-inhibitory and differentiation-inducing effects of RA, as well as a RA-resistant subclone of one of the cell lines (S91-C154), in order to study the role of the nuclear RARs in these effects. The initial phase of this project consisted of the characterization of the expression pattern of the three known RAR and RXR types in the murine melanoma cell lines in order to determine whether any differences exist which may elucidate a role for any of the receptors in RA-induced growth inhibition and differentiation. The novel finding was made that the RAR-$\beta$ gene is rapidly induced from undetectable levels by RA treatment at the mRNA and protein level, and that the induction of RAR-$\beta$ by other biologically active retinoids correlated with their ability to inhibit the growth of the highly RA-sensitive S91-C2 cell line. This suggests a role for RAR-$\beta$ in the growth inhibiting effect of retinoids. The second phase of this project involves the stable expression of RAR-$\beta$ in the S91-C2 cells and the RAR-$\beta$ receptor-null cell line, K1735P. These studies have indicated an inverse correlation between RAR-$\beta$ expression and proliferation rate. ^
Resumo:
The 14.5 kDa (galectin-1) and 31 kDa (galectin-3) lectins are the most well characterized members of a family of vertebrate carbohydrate-binding proteins known as the galectins. Evidence has been obtained implicating these galectins in events as diverse as cell-cell and cell-extracellular matrix interactions, growth regulation, transformation, differentiation, and programmed cell death. In the present study, sodium butyrate was found to be a potent inducer of galectin-1 in the KM12 human colon carcinoma cell line. Prior to treatment with butyrate this cell line expresses only galectin-3. These cells were utilized as an in vitro model system to study galectin expression as well as that of their endogenous ligands. The initial phase of this project involved the examination of the induction of galectin-1 by butyrate at the protein level. These studies indicated that galectin-1 induction by butyrate was relatively rapid reaching nearly maximal levels after only 24 hours. Additionally, the induction was found to be reversible upon the removal of butyrate and to precede the increase in expression of the well characterized differentiation marker, carcinoembryonic antigen (CEA). The second phase of this project involved the characterization of potential glycoprotein ligands for galectin-1 and galectin-3. This work demonstrated that the polylactosaminoglycan-containing glycoproteins laminin, CEA, and the lysosome-associated glycoproteins-1 and -2 (LAMPs-1 and -2) are capable of serving as ligands for both galectin-1 and -3. The third phase of this project involved the analysis of the induction of the galectin-1 promoter by butyrate. Through the analysis of deletion constructs transiently transfected into KM12 cells, the region of the galectin-1 promoter mediating a high level of induction by butyrate was localized primarily within a proximal portion of the promoter containing a CCAAT element and an Sp1 binding site. The CCAAT-binding activity in the KM12 nuclear extracts was subsequently dentified as NF-Y by gel shift analysis. These studies suggest that: (1) the galectins may be involved in modulating adhesive interactions in human colon carcinoma cells through the binding of several polylactosaminoglycans shown to play a role in adhesion and (2) high level induction of the galectin-1 promoter by butyrate can proceed through a discreet, proximal element containing an NF-Y-binding CCAAT box and an Sp1 site. ^