9 resultados para Theta Gstt1

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione S-transferase (GST) genes detoxify and metabolize carcinogens, including oxygen free radicals which may contribute to salivary gland carcinogenesis. This cancer center-based case-control association study included 166 patients with incident salivary gland carcinoma (SGC) and 511 cancer-free controls. We performed multiplex polymerase chain reaction-based polymorphism genotyping assays for GSTM1 and GSTT1 null genotypes. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with multivariable logistic regression analyses adjusted for age, sex, ethnicity, tobacco use, family history of cancer, alcohol use and radiation exposure. In our results, 27.7% of the SGC cases and 20.6% of the controls were null for the GSTT1 (P = 0.054), and 53.0% of the SGC cases and 50.9% of the controls were null for the GSTM1 (P = 0.633). The results of the adjusted multivariale regression analysis suggested that having GSTT1 null genotype was associated with a significantly increased risk for SGC (odds ratio 1.5, 95% confidence interval 1.0-2.3). Additionally, 13.9% of the SGC cases but only 8.4% of the controls were null for both genes and the results of the adjusted multivariable regression analysis suggested that having both null genotypes was significantly associated with an approximately 2-fold increased risk for SGC (odds ratio 1.9, 95% confidence interval 1.0-3.5). The presence of GSTT1 null genotype and the simultaneous presence of GSTM1 and GSTT1 null genotypes appear associated with significantly increased SGC risk. These findings warrant further study with larger sample sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idiopathic or isolated clubfoot is a common orthopedic birth defect that affects approximately 135,000 children worldwide. It is characterized by equinus, varus and adductus deformities of the ankle and foot. Correction of clubfoot involves months of serial manipulations, castings and bracing, with surgical correction needed in forty percent of cases. Multifactorial etiology has been suggested in numerous studies with both environmental and genetic factors playing an etiologic role. Maternal smoking during pregnancy is the only common environmental factor that has consistently been shown to increase the risk for clubfoot. Moreover, a positive family history of clubfoot and maternal smoking increases the risk of clubfoot twenty fold. These findings suggest that genetic variation in smoking metabolism genes may increase susceptibility to clubfoot. Based on this reasoning, we interrogated eight candidate genes, chosen based on their involvement in phase 1 and 2 cigarette smoke metabolism. Twenty-two SNPs and two null alleles in eight genes (CYP1A1, CYP1A2, CYP1B1, CYP2A6, EPHX1, NAT2, GSTM1 and GSTT1) were genotyped in a dataset composed of nonHispanic white and Hispanic multiplex and simplex families. Only one SNP in CYP1A1, rs1048943, had significantly altered transmission in the aggregate and multiplex NHW datasets (p=0.003 and p=0.009). Perturbation of CYP1A1 by rs1048943 polymorphism causes an increase in the amount of harmful, adduct forming metabolic intermediates. A significant gene interaction between EPHX1 and NAT2 was also found (p=0.007). This interaction may affect the metabolism of harmful metabolic intermediates. Additionally, marginal interactions were found for other xenobiotic genes and these interactions may play a contributory role in clubfoot. Importantly, for CYP1A2, significant maternal (p=0.03; RR=1.24; 95% CI: 1.04-1.44) and fetal (p=0.01; RR=1.33; 95% CI: 1.13-1.54) genotypic effects were identified suggesting that both maternal and fetal genotypes impact normal limb development. No association was found for maternal smoking status and tobacco metabolism genes. Together, these results suggest that xenobiotic metabolism genes may play a contributory role in the etiology of clubfoot regardless of maternal smoking status and may impact foot development through perturbation of tobacco metabolic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late long-term potentiation (L-LTP) denotes long-lasting strengthening of synapses between neurons. L-LTP appears essential for the formation of long-term memory, with memories at least partly encoded by patterns of strengthened synapses. How memories are preserved for months or years, despite molecular turnover, is not well understood. Ongoing recurrent neuronal activity, during memory recall or during sleep, has been hypothesized to preferentially potentiate strong synapses, preserving memories. This hypothesis has not been evaluated in the context of a mathematical model representing ongoing activity and biochemical pathways important for L-LTP. In this study, ongoing activity was incorporated into two such models - a reduced model that represents some of the essential biochemical processes, and a more detailed published model. The reduced model represents synaptic tagging and gene induction simply and intuitively, and the detailed model adds activation of essential kinases by Ca(2+). Ongoing activity was modeled as continual brief elevations of Ca(2+). In each model, two stable states of synaptic strength/weight resulted. Positive feedback between synaptic weight and the amplitude of ongoing Ca(2+) transients underlies this bistability. A tetanic or theta-burst stimulus switches a model synapse from a low basal weight to a high weight that is stabilized by ongoing activity. Bistability was robust to parameter variations in both models. Simulations illustrated that prolonged periods of decreased activity reset synaptic strengths to low values, suggesting a plausible forgetting mechanism. However, episodic activity with shorter inactive intervals maintained strong synapses. Both models support experimental predictions. Tests of these predictions are expected to further understanding of how neuronal activity is coupled to maintenance of synaptic strength. Further investigations that examine the dynamics of activity and synaptic maintenance can be expected to help in understanding how memories are preserved for up to a lifetime in animals including humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Models of DNA sequence evolution and methods for estimating evolutionary distances are needed for studying the rate and pattern of molecular evolution and for inferring the evolutionary relationships of organisms or genes. In this dissertation, several new models and methods are developed.^ The rate variation among nucleotide sites: To obtain unbiased estimates of evolutionary distances, the rate heterogeneity among nucleotide sites of a gene should be considered. Commonly, it is assumed that the substitution rate varies among sites according to a gamma distribution (gamma model) or, more generally, an invariant+gamma model which includes some invariable sites. A maximum likelihood (ML) approach was developed for estimating the shape parameter of the gamma distribution $(\alpha)$ and/or the proportion of invariable sites $(\theta).$ Computer simulation showed that (1) under the gamma model, $\alpha$ can be well estimated from 3 or 4 sequences if the sequence length is long; and (2) the distance estimate is unbiased and robust against violations of the assumptions of the invariant+gamma model.^ However, this ML method requires a huge amount of computational time and is useful only for less than 6 sequences. Therefore, I developed a fast method for estimating $\alpha,$ which is easy to implement and requires no knowledge of tree. A computer program was developed for estimating $\alpha$ and evolutionary distances, which can handle the number of sequences as large as 30.^ Evolutionary distances under the stationary, time-reversible (SR) model: The SR model is a general model of nucleotide substitution, which assumes (i) stationary nucleotide frequencies and (ii) time-reversibility. It can be extended to SRV model which allows rate variation among sites. I developed a method for estimating the distance under the SR or SRV model, as well as the variance-covariance matrix of distances. Computer simulation showed that the SR method is better than a simpler method when the sequence length $L>1,000$ bp and is robust against deviations from time-reversibility. As expected, when the rate varies among sites, the SRV method is much better than the SR method.^ The evolutionary distances under nonstationary nucleotide frequencies: The statistical properties of the paralinear and LogDet distances under nonstationary nucleotide frequencies were studied. First, I developed formulas for correcting the estimation biases of the paralinear and LogDet distances. The performances of these formulas and the formulas for sampling variances were examined by computer simulation. Second, I developed a method for estimating the variance-covariance matrix of the paralinear distance, so that statistical tests of phylogenies can be conducted when the nucleotide frequencies are nonstationary. Third, a new method for testing the molecular clock hypothesis was developed in the nonstationary case. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

D1S1, an anonymous human DNA clone originally called (lamda)Ch4-H3 or (lamda)H3, was the first single copy mapped to a human chromosome (1p36) by in situ hybridization. The chromosomal assignment has been confirmed in other laboratories by repeating the in situ hybridization but not by another method. In the present study, hybridization to a panel of hamster-human somatic cell hybrids revealed copies of D1S1 on both chromosomes 1 and 3. Subcloning D1S1 showed that the D1S1 clone itself is from chromosome 3, and the sequence detected by in situ hybridization is at least two copies of part of the chromosome 3 copy. This finding demonstrates the importance of verifying gene mapping with two methods and questions the accuracy of in situ hybridization mapping.^ Non-human mammals have only one copy of D1S1, and the non-human primate D1S1 map closely resembles the human chromosome 3 copy. Thus, the human chromosome 1 copies appear to be part of a very recent duplication that occurred after the divergence between humans and the other great apes.^ A moderately informative HindIII D1S1 RFLP was mapped to chromosome 3. This marker and 12 protein markers were applied to a linkage study of autosomal dominant retinitis pigmentosa (ADRP). None of the markers proved linkage, but adding the three families examined to previously published data raises the ADRP:Rh lod score to 1.92 at (THETA) = 0.30. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Medulloblastoma is a type of brain cancer that accounts for approximately 7-8% of all intracranial tumors and 20-30% of pediatric brain tumors. It is the most common type of malignant brain tumor in childhood. It was reported that majority of survivors with medulloblastoma have social problems, endocrine deficits, and neurological complications. Furthermore, all had significant deficits in neurocognitive functioning. Glutathione S-transferases belong to a family of isoenzymes that catalyze the glutathione conjugation of a variety of electrophilic compounds. ^ Objective. We aimed to determine whether the development of neurocognitive impairment is associated with GST polymorphisms among children and adolescents diagnosed with medulloblastoma (MB) after radiation therapy. ^ Methods. A pilot study composing of 16 children and adolescents diagnosed with MB at Texas Children's Cancer Center was conducted. The t-test was used to determine if the GST polymorphisms were related to neurocognitive impairment and logistic regression was performed to explore association between GST polymorphisms and gender, age at diagnosis, race/ethnicity, and risk group. ^ Results. An association was observed between GSTT1 polymorphism and cognitive impairment one year after radiation and GSTM1 polymorphism two years after radiation. It was observed that patients with GSTT1 null genotype have lower performance IQ (p=0.03) and full scale IQ (p=0.02) one year after radiation and patients with GSTM1 null genotype have lower verbal IQ (p=0.02) two years after radiation. Patients under age 8 have a statistically non-significant higher risk of having not null genotypes compared to those older than age 8 (OR= 7.5, 95%CI: 0.62-90.65 and OR= 2.63, 95%CI: 0.30-23.00 for GSTT1 and GSTM1 respectively). ^ Conclusion. There was a significant association between GSTT1 polymorphism and cognitive impairment one year after radiation and between GSTM1 polymorphism and cognitive impairment two years after radiation. Further large scale studies may be needed to confirm this finding and to examine the underlying mechanism of neurocognitive impairments after treatment of medulloblastoma patients.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^