2 resultados para Thermosensitive hydrogels

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The murine sarcoma virus MuSVts110 exhibits an alternative RNA splicing pattern. Like other simple retroviruses, MuSVts110 pre-mRNA splicing is balanced to allow the production of both spliced and unspliced RNA during the replicative cycle. In addition to balance, MuSVts110 RNA splicing exhibits a unique growth-temperature restriction to splicing; temperatures below 33$\sp\circ$C are permissive for splicing while temperatures of 37$\sp\circ$C or above are non-permissive. Previous work has established that this thermosensitive splicing phenotype is mediated in cis by viral transcript features. Here we show that at least three sequence elements regulate the MuSVts110 splicing phenotype. First, the MuSVts110 branchpoint (BP) and poly-pyrimidine tract (PPT) were found to be determinants of overall splicing efficiency. Wild-type MuSVts110 possesses a weak BP and PPT adjacent to the 3$\sp\prime$ splice site. Introduction of a strong BP caused MuSVts110 splicing to proceed to virtual completion in vivo, thus losing any vestige of balance or thermosensitivity. In in vitro splicing extracts, the strong BP overcame a blockade to wt MuSVts110 splicing at both the first and second catalytic steps. Weakening the consensus nature of the strong BP allowed the recovery of thermosensitive splicing in vivo, and reinstated the blockades to splicing in vitro, arguing that a suboptimal BP is an unusual manifestation of the proportional splicing pattern of retroviruses. The PPT is essential for accurate recognition of the BP sequence by the splicing machinery. Lengthening the PPT of MuSVts110 from 9 to 19 consecutive pyrimidines increased the overall efficiency of splicing in vivo dramatically, but was less effective than the strong BP in overriding the restriction on splicing imposed by high growth temperatures. Finally, decreasing gradually the overall size of the intron unexpectedly reduced splicing efficiency at growth temperatures permissive for splicing, suggesting that non-conserved sequences within the intron of MuSVts110 participate in splicing regulation as well. Taken together, these results suggest a mechanism of control in which MuSVts110 splicing is modulated by the entire intron, but principally by suboptimal signals at the splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like other simple retroviruses the murine sarcoma virus ts110 (MuSVts110) displays an inefficient mode of genome splicing. But, unlike the splicing phenotypic of other retroviruses, the splicing event effected upon the transcript of MuSVts110 is temperature sensitive. Previous work in this laboratory has established that the conditionally defective nature of MuSVts110 RNA splicing is mediated in cis by features in the viral transcript. Here we show that the 5$\sp\prime$ splice site of the MuSVts110 transcript acts as a point of control of the overall splicing efficiency at both permissive and nonpermissive temperatures for splicing. We strengthened and simultaneously weakened the nucleotide structure of the 5$\sp\prime$ splice site in an attempt to elucidate the differential effects each of the two known critical splicing components which interact with the 5$\sp\prime$ splice site have on the overall efficiency of intron excision. We found that a transversion of the sixth nucleotide, resulting in the formation of a near-consensus 5$\sp\prime$ splice site, dramatically increased the overall efficiency of MuSVts110 RNA splicing and abrogated the thermosensitive nature of this splicing event. Various secondary mutations within this original transversion mutant, designed to selectively decrease specific splicing component interactions, lead to recovery of inefficient and thermosensitive splicing. We have further shown that a sequence of 415 nucleotides lying in the downstream exon of the viral RNA and hypothesized to act as an element in the temperature-dependent inhibition of splicing displays a functional redundancy throughout its length; loss and/or replacement of any one sequence of 100 nucleotides within this sequence does not, with one exception detailed below, diminish the degree to which MuSVts110 RNA is inhibited to splice at the restrictive temperature. One specific deletion, though, fortuitously juxtaposed and activated cryptic consensus splicing signals for the excision of a cryptic intron within the downstream exon and markedly potentiated--across a newly defined cryptic exon--the splicing event effected upon the upstream, native intron. We have exploited this mutant of MuSVts110 to further an understanding of the process of exon definition and intron definition and show that the polypyrimidine tract and consensus 3$\sp\prime$ splice site, as well as the 5$\sp\prime$ splice site, within the intron at the 3$\sp\prime$ flank of the defined exon are required for the exon's definition; implying that definition of the downstream intron is required for the in vivo definition of the proximal, upstream exon. Finally; we have shown, through the construction of heterologous mutants of MuSVts110 employing a foreign 3$\sp\prime$ end-forming sequence, that efficiency of transcript splicing can be increased--to a degree which abrogates its thermosensitive nature--in direct proportion to increasing proximity of the 3$\sp\prime$ end-forming signal to the terminal 3$\sp\prime$ splice site. ^