2 resultados para Testing criteria
em DigitalCommons@The Texas Medical Center
Resumo:
Although gastrointestinal stromal tumor (GIST) is effectively treated with imatinib, there are a number of clinical challenges in the optimal treatment of these patients. The plasma steady-state trough level of imatinib has been proposed to correlate with clinical outcome. Plasma imatinib level may be affected by a number of patient characteristics. Additionally, the ideal plasma trough concentration of imatinib is likely to vary based on the KIT genotype (genotype determines imatinib binding affinity) of the individual patient. Patients’ genotype or plasma imatinib level may influence the type and duration of response that is appreciable by clinical evaluation. The objectives of this study were to determine effects of genotype on the type of response appreciable by current imaging criteria, to determine the distribution of plasma imatinib levels in patients with GIST, to determine factors that correlate with plasma imatinib level, to determine the incremental effects of imatinib dose escalation; and to explore the median plasma levels and outcomes of patients with various KIT mutations. We therefore obtained KIT mutation information and analyzed CT response for size and density measurement of GISTs at baseline and within the first four moths of imatinib treatment. In 126 patients with metastatic/unresectable disease, the KIT genotype of patients’ tumor was significantly associated with unique response characteristics measurable by CT. Furthermore, hepatic and peritoneal metastases differed in their response characteristics. A subgroup of patients with KIT exon 9 mutation, who received higher doses of imatinib and experienced higher trough imatinib levels, experienced improved progression-free survival similar to that of KIT exon 11 patients. Therefore, we have found that imatinib plasma levels were higher in patients with elevated Aspartate amino transferase, were women, were older, or were being treated concomitantly with CYP450 substrate drugs. As expected, CYP450 inducers correlated with a lower plasma imatinib levels in GIST patients. Renal metabolism of imatinib accounts for <10%, so it was not included in the analysis but may affect covariates. Interestingly, there was a trend for low imatinib levels and inferior progression-free survival in patients who had undergone complete gastrectomy. Patients with KIT exon 9 mutation in our cohort received higher imatinib doses, experienced higher trough imatinib levels, and experienced a PFS similar to that of KIT exon 11 patients. In conclusion, imatinib plasma levels are influenced by a number of patient characteristics. The optimal imatinib plasma level for individual patients is not known but is an area of intense investigation. Our study confirms patients with KIT exon 9 mutations benefit from high-dose imatinib and higher trough imatinib levels.
Resumo:
Background: Lynch Syndrome (LS) is a familial cancer syndrome with a high prevalence of colorectal and endometrial carcinomas among affected family members. Clinical criteria, developed from information obtained from familial colorectal cancer registries, have been generated to identify individuals at elevated risk for having LS. In 2007, the Society of Gynecologic Oncology (SGO) codified criteria to assist in identifying women presenting with gynecologic cancers at elevated risk for having LS. These criteria have not been validated in a population-based setting. Materials and Methods: We retrospectively identified 412, unselected endometrial cancer cases. Clinical and pathologic information were obtained from the electronic medical record, and all tumors were tested for expression of the DNA mismatch repair proteins through immunohistochemistry. Tumors exhibiting loss of MSH2, MSH6 and PMS2 were designated as probable Lynch Syndrome (PLS). For tumors exhibiting immunohistochemical loss of MLH1, we used the PCR-based MLH1 methylation assay to delineate PLS tumors from sporadic tumors. Samples lacking methylation of the MLH1 promoter were also designated as PLS. The sensitivity and specificity for SGO criteria for detecting PLS tumors was calculated. We compared clinical and pathologic features of sporadic tumors and PLS tumors. A simplified cost-effectiveness analysis was also performed comparing the direct costs of utilizing SGO criteria vs. universal tumor testing. Results: In our cohort, 43/408 (10.5%) of endometrial carcinomas were designated as PLS. The sensitivity and specificity of SGO criteria to identify PLS cases were 32.7 and 77%, respectively. Multivariate analysis of clinical and pathologic parameters failed to identify statistically significant differences between sporadic and PLS tumors with the exception of tumors arising from the lower uterine segment. These tumors were more likely to occur in PLS tumors. Cost-effectiveness analysis showed clinical criteria and universal testing strategies cost $6,235.27/PLS case identified and $5,970.38/PLS case identified, respectively. Conclusions: SGO 5-10% criteria successfully identify PLS cases among women who are young or have significant family history of LS related tumors. However, a larger proportion of PLS cases occurring at older ages with less significant family history are not detected by this screening strategy. Compared to SGO clinical criteria, universal tumor testing is a cost effective strategy to identify women presenting with endometrial cancer who are at elevated risk for having LS.