2 resultados para Temperature intervals

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Little is known about the effects of hypothermia therapy and subsequent rewarming on the PQRST intervals and heart rate variability (HRV) in term newborns with hypoxic-ischemic encephalopathy (HIE). OBJECTIVES: This study describes the changes in the PQRST intervals and HRV during rewarming to normal core body temperature of 2 newborns with HIE after hypothermia therapy. METHODS: Within 6 h after birth, 2 newborns with HIE were cooled to a core body temperature of 33.5 degrees C for 72 h using a cooling blanket, followed by gradual rewarming (0.5 degrees C per hour) until the body temperature reached 36.5 degrees C. Custom instrumentation recorded the electrocardiogram from the leads used for clinical monitoring of vital signs. Generalized linear mixed models were calculated to estimate temperature-related changes in PQRST intervals and HRV. Results: For every 1 degrees C increase in body temperature, the heart rate increased by 9.2 bpm (95% CI 6.8-11.6), the QTc interval decreased by 21.6 ms (95% CI 17.3-25.9), and low and high frequency HRV decreased by 0.480 dB (95% CI 0.052-0.907) and 0.938 dB (95% CI 0.460-1.416), respectively. CONCLUSIONS: Hypothermia-induced changes in the electrocardiogram should be monitored carefully in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viral proteins synthesized by a Moloney murine sarcoma virus (Mo-MuSV) with a temperature-sensitive mutation in a function required for the maintenance of the transformed state (ts110) were examined. Normal rat kidney cells (NRK) were infected with the ts110 virus and a non-virus-producing cell clone, termed 6m2, was isolated. This cell clone had a malignant phenotype at 33(DEGREES), the permissive temperature, but changed to a normal phenotype at 39(DEGREES).^ Two viral proteins were detected in 6m2 cells. A 58,000 dalton protein (P58) was detected at both 33(DEGREES) and 39(DEGREES) and contained only core protein (gag) coded sequences. An 85,000 dalton protein (P85) was detected only at 33(DEGREES) and contained sequences of viral core proteins p15, pp12, and part of p30 as well as protein sequences attributed by peptide mapping to P23 and P38, two candidate viral mouse src (v-mos) gene products. These results provide good evidence that P85 is a gag-mos polyprotein. As expected for a functional mos-gene product, P85 synthesis preceded parameters characteristic of the transformed state, including changes in cell morphology, in the cytoplasmic microtubule complex (CMTC) and in the rate of hexose uptake.^ Other studies were conducted to ascertain the defect which prohibited the synthesis of P85 at 39(DEGREES), the non-permissive temperature. When 6m2 cells were treated with actinomycin D at 39(DEGREES) and shifted to 33(DEGREES), the cells were unable to synthesize P85, but P58 continued to be made. P85 mRNA, active at 33(DEGREES), continued to be translated for two to three hours after shifting to 39(DEGREES) as judged by pulse-labeling experiments. Virus harvested at 33(DEGREES) from ts110 MuSV producer cells packaged both P85 and P58 coding RNAs while virus harvested at 39(DEGREES) was deficient in the amount of P85 coding RNA. Agarose gel electrophoresis of 6m2 cellular RNA showed that RNA harvested at 33(DEGREES) contained the 4.0 and 3.5 kb RNAs. Similar experiments on cells maintained at 39(DEGREES) have detected only the 4.0 kb RNA, suggesting that the 3.5 kb RNA codes for P85. The defect appeared to be in the long term stability of the P85 coding RNA at 39(DEGREES), since, in shift-up experiments (33(DEGREES) (--->) 39(DEGREES)), P85 was translated for only three hours at 39(DEGREES), while P58 was synthesized for at least eight hours. However, at 33(DEGREES) in the presence of actinomycin D, the ratio of P85 and P58 synthesis at hourly intervals was similar throughout a 12 hour period. ^