5 resultados para Telomere

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The histone acetyltransferase, GCN5, is essential for survival of mice during embryogenesis. GCN5 null embryos die early during development due to increased apoptosis. We have demonstrated that the increased apoptosis in associated with increased p53 protein levels. Loss of p53 rescues the embryonic apoptosis in the GCN5 null embryos. These results raised the question of what molecular trigger leads to p53 stabilization and cell death in the absence of GCN5. p53 is generally referred to as the gatekeeper of the cell, monitoring cellular responses to DNA damage, genotoxic stress, and other unfavorable conditions in the cell. Therefore, we examined individual cells in wild type and mutant embryos for gross chromosomal aberrations that might trigger a genome integrity checkpoint. Karyotype analysis indicates that approximately 30% of the cells in an E8.5 GCN5 null embryo display chromosomal aberrations, predominantly chromosomal end adhesions and associations. In wild type E8.5 embryos, only 6% of the cells have chromosomal aberrations. Recent data using telomeric FISH demonstrates that cells from GCN5 null embryos have a decreased telomeric signal. Telomere maintenance is essential for maintaining genome integrity. Telomeric defects are associated with loss of chromosomes and chromosomal rearrangements that can lead to detrimental gene fusions involved in many types of cancers. Little is known about the chromatin structures present near the telomeric ends, or whether any of the telomere-associated proteins are subject to post-translational modification such as acetylation. Our results are the first data to demonstrate the involvement of a histone acetyltransferase, GCN5, in maintaining genome integrity through telomere maintenance and/or capping. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.