8 resultados para Telemetry of process variables
em DigitalCommons@The Texas Medical Center
Resumo:
This study investigated the effects of patient variables (physical and cognitive disability, significant others' preference and social support) on nurses' nursing home placement decision-making and explored nurses' participation in the decision-making process.^ The study was conducted in a hospital in Texas. A sample of registered nurses on units that refer patients for nursing home placement were asked to review a series of vignettes describing elderly patients that differed in terms of the study variables and indicate the extent to which they agreed with nursing home placement on a five-point Likert scale. The vignettes were judged to have good content validity by a group of five colleagues (expert consultants) and test-retest reliability based on the Pearson correlation coefficient was satisfactory (average of.75) across all vignettes.^ The study tested the following hypotheses: Nurses have more of a propensity to recommend placement when (1) patients have severe physical disabilities; (2) patients have severe cognitive disabilities; (3) it is the significant others' preference; and (4) patients have no social support nor alternative services. Other hypotheses were that (5) a nurse's characteristics and extent of participation will not have a significant effect on their placement decision; and (6) a patient's social support is the most important, single factor, and the combination of factors of severe physical and cognitive disability, significant others' preference, and no social support nor alternative services will be the most important set of predictors of a nurse's placement decision.^ Analysis of Variance (ANOVA) was used to analyze the relationships implied in the hypothesis. A series of one-way ANOVA (bivariate analyses) of the main effects supported hypotheses one-five.^ Overall, the n-way ANOVA (multivariate analyses) of the main effects confirmed that social support was the most important single factor controlling for other variables. The 4-way interaction model confirmed that the most predictive combination of patient characteristics were severe physical and cognitive disability, no social support and the significant others did not desire placement. These analyses provided an understanding of the importance of the influence of specific patient variables on nurses' recommendations regarding placement. ^
Resumo:
Ethnic violence appears to be the major source of violence in the world. Ethnic hostilities are potentially all-pervasive because most countries in the world are multi-ethnic. Public health's focus on violence documents its increasing role in this issue.^ The present study is based on a secondary analysis of a dataset of responses by 272 individuals from four ethnic groups (Anglo, African, Mexican, and Vietnamese Americans) who answered questions regarding variables related to ethnic violence from a general questionnaire which was distributed to ethnically diverse purposive, nonprobability, self-selected groups of individuals in Houston, Texas, in 1993.^ One goal was psychometric: learning about issues in analysis of datasets with modest numbers, comparison of two approaches to dealing with missing observations not missing at random (conducting analysis on two datasets), transformation analysis of continuous variables for logistic regression, and logistic regression diagnostics.^ Regarding the psychometric goal, it was concluded that measurement model analysis was not possible with a relatively small dataset with nonnormal variables, such as Likert-scaled variables; therefore, exploratory factor analysis was used. The two approaches to dealing with missing values resulted in comparable findings. Transformation analysis suggested that the continuous variables were in the correct scale, and diagnostics that the model fit was adequate.^ The substantive portion of the analysis included the testing of four hypotheses. Hypothesis One proposed that attitudes/efficacy regarding alternative approaches to resolving grievances from the general questionnaire represented underlying factors: nonpunitive social norms and strategies for addressing grievances--using the political system, organizing protests, using the system to punish offenders, and personal mediation. Evidence was found to support all but one factor, nonpunitive social norms.^ Hypothesis Two proposed that the factor variables and the other independent variables--jail, grievance, male, young, and membership in a particular ethnic group--were associated with (non)violence. Jail, grievance, and not using the political system to address grievances were associated with a greater likelihood of intergroup violence.^ No evidence was found to support Hypotheses Three and Four, which proposed that grievance and ethnic group membership would interact with other variables (i.e., age, gender, etc.) to produce variant levels of subgroup (non)violence.^ The generalizability of the results of this study are constrained by the purposive self-selected nature of the sample and small sample size (n = 272).^ Suggestions for future research include incorporating other possible variables or factors predictive of intergroup violence in models of the kind tested here, and the development and evaluation of interventions that promote electoral and nonelectoral political participation as means of reducing interethnic conflict. ^
Resumo:
A historical prospective study was designed to assess the man weight status of subjects who participated in a behavioral weight reduction program in 1983 and to determine whether there was an association between the dependent variable weight change and any of 31 independent variables after a 2 year follow-up period. Data was obtained by abstracting the subjects records and from a follow-up questionnaire administered 2 years following program participation. Five hundred nine subjects (386 females and 123 males) of 1460 subjects who participated in the program, completed and returned the questionnaire. Results showed that mean weight was significantly different (p < 0.001) between the measurement at baseline and after a 2 year follow-up period. The mean weight loss of the group was 5.8 pounds, 10.7 pounds for males and 4.2 pounds for females after a 2 year follow-up period. A total of 63.9% of the group, 69.9% of males and 61.9% of females were still below their initial weight after the 2 year follow-up period. Sixteen of the 31 variables assessed utilizing bivariate analyses were found to be significantly (p (LESSTHEQ) 0.05) associated with weight change after a 2 year follow-up period. These variables were then entered into a multivariate linear regression model. A total of 37.9% of the variance of the dependent variable, weight change, was accounted for by all 16 variables. Eight of these variables were found to be significantly (p (LESSTHEQ) 0.05) predictive of weight change in the stepwise multivariate process accounting for 37.1% of the variance. These variables included: Two baseline variables (percent over ideal body weight at enrollment and occupation) and six follow-up variables (feeling in control of eating habits, percent of body weight lost during treatment, frequency of weight measurement, physical activity, eating in response to emotions, and number of pounds of weight gain needed to resume a diet). It was concluded that a greater amount of emphasis should be placed on the six follow-up variables by clinicians involved in the treatment of obesity, and by the subjects themselves to enhance their chances of success at long-term weight loss. ^
Resumo:
The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^
A descriptive and exploratory analysis of occupational injuries at a chemical manufacturing facility
Resumo:
A retrospective study of 1353 occupational injuries occurring at a chemical manufacturing facility in Houston, Texas from January, 1982 through May, 1988 was performed to investigate the etiology of the occupational injury process. Injury incidence rates were calculated for various sub-populations of workers to determine differences in the risk of injury for various groups. Linear modeling techniques were used to determine the association between certain collected independent variables and severity of an injury event. Finally, two sub-groups of the worker population, shiftworkers and injury recidivists, were examined. An injury recidivist as defined is any worker experiencing one or more injury per year. Overall, female shiftworkers evidenced the highest average injury incidence rate compared to all other worker groups analyzed. Although the female shiftworkers were younger and less experienced, the etiology of their increased risk of injury remains unclear, although the rigors of performing shiftwork itself or ergonomic factors are suspect. In general, females were injured more frequently than males, but they did not incur more severe injuries. For all workers, many injuries were caused by erroneous or foregone training, and risk taking behaviors. Injuries of these types are avoidable. The distribution of injuries by severity level was bimodal; either injuries were of minor or major severity with only a small number of cases falling in between. Of the variables collected, only the type of injury incurred and the worker's titlecode were statistically significantly associated with injury severity. Shiftworkers did not sustain more severe injuries than other worker groups. Injury to shiftworkers varied as a 24-hour pattern; the greatest number occurred between 1200-1230 hours, (p = 0.002) by Cosinor analysis. Recidivists made up 3.3% of the population (23 males and 10 females), yet suffered 17.8% of the injuries. Although past research suggests that injury recidivism is a random statistical event, analysis of the data by logistic regression implicates gender, area worked, age and job titlecode as being statistically significantly related to injury recidivism at this facility. ^
Resumo:
Body fat distribution is a cardiovascular health risk factor in adults. Body fat distribution can be measured through various methods including anthropometry. It is not clear which anthropometric index is suitable for epidemiologic studies of fat distribution and cardiovascular disease. The purpose of the present study was to select a measure of body fat distribution from among a series of indices (those traditionally used in the literature and others constructed from the analysis) that is most highly correlated with lipid-related variables and is independent of overall fatness. Subjects were Mexican-American men and women (N = 1004) from a study of gallbladder disease in Starr County, Texas. Multivariate associations were sought between lipid profile measures (lipids, lipoproteins, and apolipoproteins) and two sets of anthropometric variables (4 circumferences and 6 skinfolds). This was done to assess the association between lipid-related measures and the two sets of anthropometric variables and guide the construction of indices.^ Two indices emerged from the analysis that seemed to be highly correlated with lipid profile measures independent of obesity. These indices are: 2*arm circumference-thigh skinfold in pre- and post-menopausal women and arm/thigh circumference ratio in men. Next, using the sum of all skinfolds to represent obesity and the selected body fat distribution indices, the following hypotheses were tested: (1) state of obesity and centrally/upper distributed body fat are equally predictive of lipids, lipoproteins and apolipoproteins, and (2) the correlation among the lipid-related measures is not altered by obesity and body fat distribution.^ With respect to the first hypothesis, the present study found that most lipids, lipoproteins and apolipoproteins were significantly associated with both overall fatness and anatomical location of body fat in both sex and menopausal groups. However, within men and post-menopausal women, certain lipid profile measures (triglyceride and HDLT among post-menopausal women and apos C-II, CIII, and E among men) had substantially higher correlation with body fat distribution as compared with overall fatness.^ With respect to the second hypothesis, both obesity and body fat distribution were found to alter the association among plasma lipid variables in men and women. There was a suggestion from the data that the pattern of correlations among men and post-menopausal women are more comparable. Among men correlations involving apo A-I, HDLT, and HDL$\sb2$ seemed greatly influenced by obesity, and A-II by fat distribution; among post-menopausal women correlations involving apos A-I and A-II were highly affected by the location of body fat.^ Thus, these data point out that not only can obesity and fat distribution affect levels of single measures, they also can markedly influence the pattern of relationship among measures. The fact that such changes are seen for both obesity and fat distribution is significant, since the indices employed were chosen because they were independent of one another. ^