4 resultados para Technologies reproductives

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tegrity Campus 2.0 is the first student achievement system that impacts learning across the entire institution, improving retention and student satisfaction. Tegrity makes class time available all the time by automatically capturing, storing and indexing every class on campus for replay by every student. With Tegrity, students quickly recall key moments or replay entire classes online, with digital notes, on their iPods and cell phones. [See PDF for complete abstract]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Federal Food and Drug Administration (FDA) and the Centers for Medicare and Medicaid (CMS) play key roles in making Class III, medical devices available to the public, and they are required by law to meet statutory deadlines for applications under review. Historically, both agencies have failed to meet their respective statutory requirements. Since these failures affect patient access and may adversely impact public health, Congress has enacted several “modernization” laws. However, the effectiveness of these modernization laws has not been adequately studied or established for Class III medical devices. ^ The aim of this research study was, therefore, to analyze how these modernization laws may have affected public access to medical devices. Two questions were addressed: (1) How have the FDA modernization laws affected the time to approval for medical device premarket approval applications (PMAs)? (2) How has the CMS modernization law affected the time to approval for national coverage decisions (NCDs)? The data for this research study were collected from publicly available databases for the period January 1, 1995, through December 31, 2008. These dates were selected to ensure that a sufficient period of time was captured to measure pre- and post-modernization effects on time to approval. All records containing original PMAs were obtained from the FDA database, and all records containing NCDs were obtained from the CMS database. Source documents, including FDA premarket approval letters and CMS national coverage decision memoranda, were reviewed to obtain additional data not found in the search results. Analyses were conducted to determine the effects of the pre- and post-modernization laws on time to approval. Secondary analyses of FDA subcategories were conducted to uncover any causal factors that might explain differences in time to approval and to compare with the primary trends. The primary analysis showed that the FDA modernization laws of 1997 and 2002 initially reduced PMA time to approval; after the 2002 modernization law, the time to approval began increasing and continued to increase through December 2008. The non-combined, subcategory approval trends were similar to the primary analysis trends. The combined, subcategory analysis showed no clear trends with the exception of non-implantable devices, for which time to approval trended down after 1997. The CMS modernization law of 2003 reduced NCD time to approval, a trend that continued through December 2008. This study also showed that approximately 86% of PMA devices do not receive NCDs. ^ As a result of this research study, recommendations are offered to help resolve statutory non-compliance and access issues, as follows: (1) Authorities should examine underlying causal factors for the observed trends; (2) Process improvements should be made to better coordinate FDA and CMS activities to include sharing data, reducing duplication, and establishing clear criteria for “safe and effective” and “reasonable and necessary”; (3) A common identifier should be established to allow tracking and trending of applications between FDA and CMS databases; (4) Statutory requirements may need to be revised; and (5) An investigation should be undertaken to determine why NCDs are not issued for the majority of PMAs. Any process improvements should be made without creating additional safety risks and adversely impacting public health. Finally, additional studies are needed to fully characterize and better understand the trends identified in this research study.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic review was performed in order to evaluate perchlorate remediation technologies. The two included technologies were ion-exchange concerted with biodegradation and solely biodegradation. A meta-analysis was completed and subsequently, a regression model was formed to conduct a degradation rate analysis and to depict the association between rate and various dependent variables (salinity/sali, nitrate concentration/nitc and carbon source concentration/csou). The outcome of the model analysis suggested that salt concentration did have an effect on the degradation rate in the ion-exchange process and that with a salt concentration greater than or equal to 18.6 g/L, the biodegradation process will produce a greater reduction of perchlorate than ion-exchange concerted with biodegradation. However, when a t-test examined the difference in perchlorate degradation rate between the two cleanup methods, there was no significant difference seen (p=0.7351, α = 0.05).^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.