6 resultados para Technologically relevant molecules
em DigitalCommons@The Texas Medical Center
Resumo:
A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^
Resumo:
Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.
Resumo:
Children with spina bifida meningomyelocele (SBM) are impaired relative to controls in terms of discriminating strong-meter and weak-meter rhythms, so congenital cerebellar dysmorphologies that affect rhythmic movements also disrupt rhythm perception. Cerebellar parcellations in children with SBM showed an abnormal configuration of volume fractions in cerebellar regions important for rhythm function: a smaller inferior-posterior lobe, and larger anterior and superior-posterior lobes.
Resumo:
The invariant chain associated with the major histocompatibility complex (MHC) class II molecules is a non-polymorphic glycoprotein implicated in antigen processing and class II molecule intracellular transport. Class II molecules and invariant chain (In) are expressed primarily by B lymphocytes and antigen-presenting cells such as macrophages and can be induced by interferon gamma (IFN-$\gamma$) in a variety of cell types such as endothelial cells, fibroblasts, and astrocytes. In this study the cis-acting sequences involved in the constitutive, tissue-specific, and IFN-$\gamma$ induced expression of the human In gene were investigated and nuclear proteins which specifically bound these sequences were identified.^ To define promoter sequences involved in the regulation of the human In gene, 790 bp 5$\sp\prime$ to the initiation of transcription were subcloned upstream of the gene encoding chloramphenicol acetyl transferase (CAT). Transfection of this construct into In expressing and non-expressing cell lines demonstrated that this 790 bp In promoter sequence conferred tissue specificity to the CAT gene. Deletion mutants were created in the promoter to identify sequences important for transcription. Three regulatory regions were identified $-$396 to $-$241, $-$241 to $-$216, and $-$216 to $-$165 bp 5$\sp\prime$ to the cap site. Transfection into a human glioblastoma cell line, U-373 MG, and treatment with IFN-$\gamma$, demonstrated that this 5$\sp\prime$ region is responsive to IFN-$\gamma$. An IFN-$\gamma$ response element was sublocalized to the region $-$120 to $-$61 bp. This region contains homology to the interferon-stimulated response element (ISRE) identified in other IFN responsive genes. IFN-$\gamma$ induces a sequence-specific DNA binding factor which binds to an oligonucleotide corresponding to $-$107 to $-$79 bp of the In promoter. This factor also binds to an oligonucleotide corresponding to $-$91 to $-$62 of the interferon-$\beta$ gene promoter, suggesting this factor may be member of the IRF-1/ISGF2, IRF-2, ICSBP family of ISRE binding proteins. A transcriptional enhancer was identified in the first intron of the In gene. This element, located in a 2.6 kb BamHI/PstI fragment, enhances the IFN-$\gamma$ response of the promoter in U-373 MG. The majority of the In enhancer activity was sublocalized to a 550 bp region $\sim$1.6 kb downstream of the In transcriptional start site. ^
Resumo:
Interleukin-2 activated lymphocytes, designated lymphokine-activated killers (LAK), acquire the unique capacity to express potent cytologic activity against a broad spectrum of abnormal and/or transformed NK-sensitive and NK-resistant target cells while sparing normal cell types. Investigations into the target spectra exhibited by cloned effector cells indicate that LAK cells express a polyspecific recognition mechanism that identifies an undefined class of cell surface-associated molecules expressed on susceptible targets. This report extends our previous investigations into the biochemical nature of these molecules by characterizing the functional role of two tumor cell-surface-associated epitopes implicated in conferring target cells with susceptibility to LAK-mediated cytotoxicity. The first moiety is implicated in the formation of effector/target cell conjugates. This binding ligand is preferentially expressed on tumor cells relative to LAK-resistant PBL target cells, sensitive to trypsin treatment, resistant to functional inactivation by heat- and detergent-induced conformational changes, and does not require N-linked glycosylation to maintain binding activity. In contrast, a carbohydrate-associated epitope represents the second tumor-associated molecule required for target cell susceptibility to LAK cells. Specifically, N-linked glyoprotein synthesis represents an absolute requirement for post-trypsin recovery of target cell susceptibility. The minimal N-linked oligosaccharide residue capable of restoring this second signal has been identified as a high mannose structure. Although ultimately required for tumor cell susceptibility, as measured in $\sp{51}$Cr-release assays, this N-glycan-associated molecule is not required for the differential tumor cell binding expressed by LAK cells. Furthermore, N-glycan expression is not adequate in itself to confer target cell susceptibility. Additional categories of cell surface components have been investigated, including O-linked oligosaccharides, and glycosaminoglycans, without identifying additional moieties relevant to target cell recognition. Collectively, these data suggest that tumor cell recognition by LAK cells is dependent on cell surface presentation of two epitopes: a trypsin-sensitive molecule that participates in the initial conjugate formation and an N-glycan-associated moiety that is involved in a post-binding event required for target cell killing. ^
Resumo:
Class I major histocompatibility complex (MHC) molecules induce either accelerated rejection or prolonged survival of allografts, presumably because of the presence of immunogenic or tolerogenic epitopes, respectively. To explore the molecular basis of this phenomenon, three chimeric class I molecules were constructed by substituting the rat class I RT1.A$\sp{\rm a}$ sequences with the N-terminus of HLA-A2.1 (N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$), the $\alpha\sb1$ helix (h) with $\rm\alpha\sb{1h}\sp{u}$ sequences ( ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$) or the entire $\alpha\sb2$ domain (d) with $\rm\alpha\sb{2d}\sp{u}$ sequences ( ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$). Wild type (WT) and chimeric cDNAs were sequenced prior to transfection into Buffalo (BUF; RT1$\sp{\rm b}$) hepatoma cells. Stable transfectants were injected subcutaneously (s.c.) into different hosts 7 days prior to challenge with a heart allograft. In BUF hosts, chimeric ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ accelerated the rejection of Wistar Furth (WF; RT1$\sp{\rm u}$) heart allografts, but had no effect on the survival of ACI (RT1$\sp{\rm a}$) grafts. In contrast, the ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ (containing $\rm\alpha\sb{1d}\sp{a}$ sequences) immunized BUF recipients toward RT1$\sp{\rm a}$ grafts. In WF hosts, WT-RT1.A$\sp{\rm a}$ was a potent immunogen and accelerated ACI graft rejection, N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$ was less effective and ($\rm\alpha\sb{\rm 1h}\sp{u}\rbrack$-RT1.A$\sp{\rm a}$ was not immunogenic. Thus, dominant and subdominant epitopes inducing in vivo sensitization to cardiac allografts are present in the $\alpha\sb1$ helix and the N-terminus, respectively. The failure of ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants (containing recipient-type $\alpha\sb{\rm 2d}$ sequences) to sensitize WF hosts toward ACI (RT1$\sp{\rm a}$) grafts, despite the presence of donor-type immunogenic $\alpha\sb{\rm 1d}\sp{\rm a}$, suggests that "self-$\alpha\sb2$" sequences displayed on chimeric antigens interfere with immunogenicity. The ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants injected s.c. prolonged the survival of WF (RT1$\sp{\rm u}$) hearts in ACI (RT1$\sp{\rm a}$) recipients. Furthermore, intra-portal injection of extracts from ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$, but not WT-RT1.A$\sp{\rm a}$ or RT1.A$\sp{\rm u}$, in conjunction with a brief cyclosporine course rendered ACI hosts permanently and specifically tolerant to donor-type WF cardiac allografts. Thus, immunodominant allodeterminants are present in the $\alpha\sb1$, but not the $\alpha\sb2$, domain of rat class I MHC molecules. Furthermore, the $\rm\alpha\sb{1h}\sp{u}$ immunogenic epitopes trigger tolerogenic responses when flanked by host-type N-terminal$\sp{\rm a}$ and $\rm\alpha\sb{2d}\sp{a}$ sequences. ^