3 resultados para Target-controlled infusion
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: Whole-body hypothermia reduced the frequency of death or moderate/severe disabilities in neonates with hypoxic-ischemic encephalopathy in a randomized, controlled multicenter trial. OBJECTIVE: Our goal was to evaluate outcomes of safety and effectiveness of hypothermia in infants up to 18 to 22 months of age. DESIGN/METHODS: A priori outcomes were evaluated between hypothermia (n = 102) and control (n = 106) groups. RESULTS: Encephalopathy attributable to causes other than hypoxia-ischemia at birth was not noted. Inotropic support (hypothermia, 59% of infants; control, 56% of infants) was similar during the 72-hour study intervention period in both groups. Need for blood transfusions (hypothermia, 24%; control, 24%), platelet transfusions (hypothermia, 20%; control, 12%), and volume expanders (hypothermia, 54%; control, 49%) was similar in the 2 groups. Among infants with persistent pulmonary hypertension (hypothermia, 25%; control, 22%), nitric-oxide use (hypothermia, 68%; control, 57%) and placement on extracorporeal membrane oxygenation (hypothermia, 4%; control, 9%) was similar between the 2 groups. Non-central nervous system organ dysfunctions occurred with similar frequency in the hypothermia (74%) and control (73%) groups. Rehospitalization occurred among 27% of the infants in the hypothermia group and 42% of infants in the control group. At 18 months, the hypothermia group had 24 deaths, 19 severe disabilities, and 2 moderate disabilities, whereas the control group had 38 deaths, 25 severe disabilities, and 1 moderate disability. Growth parameters were similar between survivors. No adverse outcomes were noted among infants receiving hypothermia with transient reduction of temperature below a target of 33.5 degrees C at initiation of cooling. There was a trend in reduction of frequency of all outcomes in the hypothermia group compared with the control group in both moderate and severe encephalopathy categories. CONCLUSIONS: Although not powered to test these secondary outcomes, whole-body hypothermia in infants with encephalopathy was safe and was associated with a consistent trend for decreasing frequency of each of the components of disability.
Resumo:
Trauma is a leading cause of death worldwide, and is thus a major public health concern. Improving current resuscitation strategies may help to reduce morbidity and mortality from trauma, and clinical research plays an important role in addressing these issues. This thesis is a secondary analysis of data that was collected for a randomized clinical trial being conducted at Ben Taub General Hospital. The trial is designed to compare a hypotensive resuscitation strategy to standard fluid resuscitation for the early treatment of trauma patients in hemorrhagic shock. This thesis examines the clinical outcomes from the first 90 subjects enrolled in the study, with the primary aim of assessing the safety of hypotensive resuscitation within the trauma population. ^ Patients in hemorrhagic shock who required emergent surgery were randomized to one of two arms of the study. Those in the experimental (LMAP) arm were managed with a hypotensive resuscitation strategy in which the target mean arterial pressure was 50mmHg. Those in the control (HMAP) arm were managed with standard fluid resuscitation to a target mean arterial pressure of 65mmHg. Patients were followed for 30 days. Mortality, post-operative complications, and other clinical data were prospectively gathered by the Ben Taub surgical staff and then secondarily analyzed for the purpose of this thesis.^ Subjects in the LMAP group had significantly lower early post-operative mortality compared to those in the HMAP group. 30-day mortality was also lower in the LMAP group, although this did not reach statistical significance. There were no statistically significant differences between the two groups with regards to development of ischemic, hematologic or infectious complications, length of hospitalization, length of ICU stay or duration of mechanical ventilation. ^ Based upon the data presented in this thesis, it appears that hypotensive resuscitation is a safe strategy for use in the trauma population. Specifically, hypotensive resuscitation reduced the risk of early post-operative death from coagulopathic bleeding and did not result in an increased risk of ischemic or other post-operative complications. The preliminary results described in this thesis provide convincing evidence support the continued investigation and use of hypotensive resuscitation in a trauma setting.^
Resumo:
Proton therapy is growing increasingly popular due to its superior dose characteristics compared to conventional photon therapy. Protons travel a finite range in the patient body and stop, thereby delivering no dose beyond their range. However, because the range of a proton beam is heavily dependent on the tissue density along its beam path, uncertainties in patient setup position and inherent range calculation can degrade thedose distribution significantly. Despite these challenges that are unique to proton therapy, current management of the uncertainties during treatment planning of proton therapy has been similar to that of conventional photon therapy. The goal of this dissertation research was to develop a treatment planning method and a planevaluation method that address proton-specific issues regarding setup and range uncertainties. Treatment plan designing method adapted to proton therapy: Currently, for proton therapy using a scanning beam delivery system, setup uncertainties are largely accounted for by geometrically expanding a clinical target volume (CTV) to a planning target volume (PTV). However, a PTV alone cannot adequately account for range uncertainties coupled to misaligned patient anatomy in the beam path since it does not account for the change in tissue density. In order to remedy this problem, we proposed a beam-specific PTV (bsPTV) that accounts for the change in tissue density along the beam path due to the uncertainties. Our proposed method was successfully implemented, and its superiority over the conventional PTV was shown through a controlled experiment.. Furthermore, we have shown that the bsPTV concept can be incorporated into beam angle optimization for better target coverage and normal tissue sparing for a selected lung cancer patient. Treatment plan evaluation method adapted to proton therapy: The dose-volume histogram of the clinical target volume (CTV) or any other volumes of interest at the time of planning does not represent the most probable dosimetric outcome of a given plan as it does not include the uncertainties mentioned earlier. Currently, the PTV is used as a surrogate of the CTV’s worst case scenario for target dose estimation. However, because proton dose distributions are subject to change under these uncertainties, the validity of the PTV analysis method is questionable. In order to remedy this problem, we proposed the use of statistical parameters to quantify uncertainties on both the dose-volume histogram and dose distribution directly. The robust plan analysis tool was successfully implemented to compute both the expectation value and its standard deviation of dosimetric parameters of a treatment plan under the uncertainties. For 15 lung cancer patients, the proposed method was used to quantify the dosimetric difference between the nominal situation and its expected value under the uncertainties.