1 resultado para Tail-flick test
em DigitalCommons@The Texas Medical Center
Resumo:
Neuronal outgrowth has been proposed in many systems as a mechanism underlying memory storage. For example, sensory neuron outgrowth is widely accepted as an underlying mechanism of long-term sensitization of defensive withdrawal reflexes in Aplysia. The hypothesis is that learning leads to outgrowth and consequently to the formation of new synapses, which in turn strengthen the neural circuit underlying the behavior. However, key experiments to test this hypothesis have never been performed. ^ Four days of sensitization training leads to outgrowth of siphon sensory neurons mediating the siphon-gill withdrawal response in Aplysia . We found that a similar training protocol produced robust outgrowth in tail sensory neurons mediating the tail siphon withdrawal reflex. In contrast, 1 day of training, which effectively induces long-term behavioral sensitization and synaptic facilitation, was not associated with neuronal outgrowth. Further examination of the effect of behavioral training protocols on sensory neuron outgrowth indicated that this structural modification is associated only with the most persistent forms of sensitization, and that the induction of these changes is dependent on the spacing of the training trials over multiple days. Therefore, we suggest that neuronal outgrowth is not a universal mechanism underlying long-term sensitization, but is involved only in the most persistent forms of the memory. ^ Sensory neuron outgrowth presumably contributes to long-term sensitization through formation of new synapses with follower motor neurons, but this hypothesis has never been directly tested. The contribution of outgrowth to long-term sensitization was assessed using confocal microscopy to examine sites of contact between physiologically connected pairs of sensory and motor neurons. Following 4 days of training, the strength of both the behavior and sensorimotor synapse and the number of appositions with follower neurons was enhanced only on the trained side of the animal. In contrast, outgrowth was induced on both sides of the animal, indicating that although sensory neuron outgrowth does appear to contribute to sensitization through the formation of new synapses, outgrowth alone is not sufficient to account for the effects of sensitization. This indicates that key regulatory steps are downstream from outgrowth, possibly in the targeting of new processes and activation of new synapses. ^