8 resultados para TRANS-SIALIDASE

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immuno-regulatory functions displayed by NK and iNKT cells have highlighted their importance as key lymphocytes involved in innate and adaptive immunity. Therefore, understanding the dynamics influencing the generation of NK and iNKT cells is extremely important. IL-15 has been shown to provide a critical signal throughout the development and homeostasis of NK and iNKT cells; however, the cellular source of IL-15 has remained unclear. In this investigation, I provide evidence that the cell-type providing IL-15 to NK and iNKT cells via trans-presentation is determined by the tissue site and the maturation status of NK and iNKT cells. For NK cells, I revealed the non-hematopoietic compartment provides IL-15 to NK cells in the early stages of development while hematopoietic cells were crucial for the generation and maintenance of mature NK cells. Regarding iNKT cells in the thymus, IL-15 trans-presentation by non-hematopoietic cells was crucial for the survival of mature iNKT cells. In the liver, both hematopoietic and non-hematopoietic compartments provided IL-15 to both immature and mature iNKT cells. This IL-15 signal helped mediate the survival and proliferation of both NK and iNKT cells as well as induce the functional maturation of mature iNKT cells via enhanced T-bet expression. In conclusion, my work illustrates an important notion that the immunological niche of NK and iNKT cells is tightly regulated and that this regulation is meticulously influenced by the tissue microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H(+)-K(+)-ATPase alpha(2) (HKalpha2) gene of the renal collecting duct and distal colon plays a central role in potassium and acid-base homeostasis, yet its transcriptional control remains poorly characterized. We previously demonstrated that the proximal 177 bp of its 5'-flanking region confers basal transcriptional activity in murine inner medullary collecting duct (mIMCD3) cells and that NF-kappaB and CREB-1 bind this region to alter transcription. In the present study, we sought to determine whether the -144/-135 Sp element influences basal HKalpha2 gene transcription in these cells. Electrophoretic mobility shift and supershift assays using probes for -154/-127 revealed Sp1-containing DNA-protein complexes in nuclear extracts of mIMCD3 cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that Sp1, but not Sp3, binds to this promoter region of the HKalpha2 gene in mIMCD3 cells in vivo. HKalpha2 minimal promoter-luciferase constructs with point mutations in the -144/-135 Sp element exhibited much lower activity than the wild-type promoter in transient transfection assays. Overexpression of Sp1, but not Sp3, trans-activated an HKalpha2 proximal promoter-luciferase construct in mIMCD3 cells as well as in SL2 insect cells, which lack Sp factors. Conversely, small interfering RNA knockdown of Sp1 inhibited endogenous HKalpha2 mRNA expression, and binding of Sp1 to chromatin associated with the proximal HKalpha2 promoter without altering the binding or regulatory influence of NF-kappaB p65 or CREB-1 on the proximal HKalpha2 promoter. We conclude that Sp1 plays an important and positive role in controlling basal HKalpha2 gene expression in mIMCD3 cells in vivo and in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Non-Hodgkin's Lymphoma (NHLs) are neoplasms of the immune system. Currently, less than 1% of the etiology of the 22,000 newly diagnosed lymphoma cases in the U.S.A. every year is known. This disease has a significant prevalence and high mortality rate. Cell growth in lymphomas has been shown to be an important parameter in aggressive NHL when establishing prognosis, as well as an integral part in the pathophysiology of the disease process. While many aggressive B cell NHLs respond initially to chemotherapeutic regimens such as CHOP-bleo (adriamycin, vincristine and bleomycin) etc., relapse is common, and the patient is then often refractory to further salvage treatment regimens.^ To assess their potential to inhibit aggressive B cell NHLs and induce apoptosis (also referred to as programmed cell death (PCD)), it was proposed to utilize the following biological agents-liposomal all-trans retinoic acid (L-ATRA) which is a derivative of Vitamin A in liposomes and Vitamin D3. Preliminary evidence indicates that L-ATRA may inhibit cell growth in these cells and may induce PCD as well. Detailed studies were performed to understand the above phenomena by L-ATRA and Vitamin D3 in recently established NHL-B cell lines and primary cell cultures. The gene regulation involved in the case of L-ATRA was also delineated. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand how the serum amyloid A (SAA) genes are regulated, the cis-acting elements and trans-acting factors involved in the regulation of mouse SAA3 and rat SAA1 genes expression during inflammation were analyzed.^ To identify DNA sequences involved in the liver-specific expression of the mouse SAA3 gene, the 5$\sp\prime$ flanking region of this gene was analyzed by transient transfection studies. Results suggest that C/EBP, a liver-enriched transcription factor, plays an important role for the enhanced expression of the mouse SAA3 gene in hepatocytes.^ Transfection studies of the regulation of the expression of rat SAA1 gene indicated that a 322 bp fragment ($-$304 to +18) of the gene contains sufficient information for cytokine-induced expression of the reporter gene in a liver cell-specific manner. Further functional analysis of the 5$\sp\prime$ flanking region of the rat SAA1 gene demonstrated that a 65 bp DNA fragment ($-$138/$-$73) can confer cytokine-inducibility onto a heterologous promoter both in liver and nonliver cells. DNase I footprint and gel retardation assays identified five putative cis-regulatory elements within the 5$\sp\prime$ flanking region of the gene: one inducible element, a NF$\kappa$B binding site and four constitutive elements. Two constitutive elements, footprint regions I and III, were identified as C/EBP binding sites with region III having over a 10-fold higher affinity for C/EBP binding than region I. Functional analysis of the cis-elements indicated that C/EBP(I) and C/EBP(III) confer liver cell-specific activation onto a heterologous promoter, while sequences corresponding to the NF$\kappa$B element and C/EBP(I) impart cytokine responsiveness onto the heterologous promoter. These results suggest that C/EBP(I) possesses two functions: liver-specific activation and cytokine responsiveness. The identification of two cytokine responsive elements (NF$\kappa$B and C/EBP(I)), and two liver-specific elements (C/EBP(I) and C/EBP(III)) implies that multiple cis-acting elements are involved in the regulation of the expression of the rat SAA1 gene. The tissue-specific and cytokine-induced expression of rat SAA1 gene is likely the result of the interactions of these cis-acting elements with their cognate trans-acting factors as well as the interplay between the different cis-acting elements and their binding factors. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic-Helix-Loop-Helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. This dissertation focuses on the cloning, expression and functional analysis of a bHLH protein termed paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in both its amino and carboxyl termini. During the process of mouse embryogenesis, paraxis transcripts are first detected at about day 7.5 post coitum within the primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated within the myotome.^ To determine the function of paraxis during mammalian embryogenesis, mice were generated with a null mutation in the paraxis locus. Paraxis null mice survived until birth, but exhibited severe foreshortening along the anteroposterior axis due to the absence of vertebrae caudal to the midthoracic region. The phenotype also included axial skeletal defects, particularly shortened bifurcated ribs which were detached from the vertebral column, fused vertebrae and extensive truncation and disorganization caudal to the hindlimbs. Mutant neonates also lacked normal levels of trunk muscle and exhibited defects in the dermis as well as the stratification of the epidermis. Analysis of paraxis -/- mutant embryos has revealed a failure of the somites to both properly epithelialize and compartmentalize, resulting in defects in somite-derived cell lineages. These results suggest that paraxis is an essential component of the genetic pathway regulating somitogenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its antiproliferative and differentiation-inducing properties, all-trans-retinoic acid (ATRA) has been used as a chemopreventive and therapeutic agent, for treatment various cancers including squamous cell carcinomas (SCCs). Long-term treatment with ATRA is associated with toxic effects in patients leading to acute or chronic hypervitaminosis syndrome. Moreover, prolonged treatment with oral ATRA leads to acquired resistance to the differentiation-inducing effects of the drug. This resistance is attributed to the induction of cytochrome P-450-dependent catabolic enzymes that lead to accelerated ATRA metabolism and decline in circulating levels. Most of these problems could be circumvented by incorporating ATRA in liposomes (L-ATRA) which results in sustained drug release, decrease in drug-associated toxicity, and protection of the drug from metabolism in the host. Liposomes also function as a solubilization matrix enabling lipophilic drugs like ATRA to be aerosolized and delivered directly to target areas in the aerodigestive tract and lungs. Of the 14 formulations tested, the positively-charged liposome, DPPC:SA (9:1, w/w) was found to be most effective in interacting with SCC cell lines. This, L-ATRA formulation was stable in the presence of serum proteins and buffered the toxic effects of the drug against several normal and malignant cell lines. The positive charge attributed by the presence of SA was critical for increased uptake and retention of L-ATRA by SCC cell lines and tumor spheroids. L-ATRA was highly effective in mediating differentiation in normal and transformed epithelial cells. Moreover, liposomal incorporation significantly reduced the rate of ATRA metabolism by cells and isolated liver microsomes. In vivo studies revealed that aerosol delivery is an effective way of administering L-ATRA, in terms of its safety and retention by lung tissue. The drug so delivered, is biologically active and had no toxic effects in mice. From these results, we conclude that liposome-incorporation is an excellent way of delivering ATRA to target tissues. The results obtained may have important clinical implications in treating patients with SCCs of the aerodigestive tract. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of cytoplasmic deadenylation, the first step in mRNA turnover, has direct impact on the fate of gene expression. AU-rich elements (AREs) found in the 3′ untranslated regions of many labile mRNAs are the most common RNA-destabilizing elements known in mammalian cells. Based on their sequence features and functional properties, AREs can be divided into three classes. Class I or class III ARE directs synchronous deadenylation, whereas class II ARE directs asynchronous deadenylation with the formation of poly(A)-intermediates. Through systematic mutagenesis study, we found that a cluster of five or six copies of AUUUA motifs forming various degrees of reiteration is the key feature dictating the choice between asynchronous versus synchronous deadenylation. A 20–30 nt AU-rich sequence immediately 5 ′ to this cluster of AUUUA motifs can greatly enhance its destabilizing ability and is an integral part of the AREs. These two features are the defining characteristics of class II AREs. ^ To better understand the decay mechanism of AREs, current methods have several limitations. Taking the advantage of tetracycline-regulated promoter, we developed a new transcriptional pulse strategy, Tet-system. By controlling the time and the amount of Tet addition, a pulse of RNA could be generated. Using this new system, we showed that AREs function in both growth- and density-arrested cells. The new strategy offers for the first time an opportunity to investigate control of mRNA deadenylation and decay kinetics in mammalian cells that exhibit physiologically relevant conditions. ^ As a member of heterogeneous nuclear RNA-binding protein, hnRNP D 0/AUF1 displays specific affinities for ARE sequences in vitro . But its in vivo function in ARE-mediated mRNA decay is unclear. AUF1/hnRNP D0 is composed of at least four isoforms derived by alternative RNA splicing. Each isoform exhibits different affinity for ARE sequence in vitro. Here, we examined in vivo effect of AUF1s/hnRNP D0s on degradation of ARE-containing mRNA. Our results showed that all four isoforms exhibit various RNA stabilizing effects in NIH3T3 cells, which are positively correlated with their binding affinities for ARE sequences. Further experiments indicated that AUF1/hnRNP D0 has a general role in modulating the stability of cytoplasmic mRNAs in mammalian cells. ^