37 resultados para T-Lymphocyte Subsets -- immunology

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Untreated AKR mice develop spontaneous thymic lymphomas by 6-12 months of age. Lymphoma development is accelerated when young mice are injected with the carcinogen N-methyl-N-nitrosourea (MNU). Selected molecular and cellular events were compared during the latent period preceding "spontaneous" (retrovirally-induced) and MNU-induced thymic lymphoma development in AKR mice. These studies were undertaken to test the hypothesis that thymic lymphomas induced in the same inbred mouse strain by endogenous retroviruses and by a chemical carcinogen develop by different mechanisms.^ Immunofluorescence analysis of differentiation antigens showed that most MNU-induced lymphomas express an immature CD4-8+ profile. In contrast, spontaneous lymphomas represent each of the major lymphocyte subsets. These data suggest involvement of different target populations in MNU-induced and spontaneous lymphomas. Analyses at intervals after MNU treatment revealed selective expansion of the CD4-8+ J11d+ thymocyte subset at 8-10 weeks post-MNU in 68% of the animals examined, suggesting that these cells are targets for MNU-induced lymphomagenesis. Untreated age-matched animals showed no selective expansion of thymocyte subsets.^ Previous data have shown that both spontaneous and MNU-induced lymphomas are monoclonal or oligoclonal. Distinct rearrangement patterns of the J$\sb2$ region of the T-cell receptor $\beta$-chain showed emergence of clonal thymocyte populations beginning at 6-7 weeks after MNU treatment. However, lymphocytes from untreated animals showed no evidence of clonal expansion at the time intervals investigated.^ Activation of c-myc frequently occurs during development of B- and T- cell lymphomas. Both spontaneous and MNU-induced lymphomas showed increased c-myc transcript levels. Increased c-myc transcription was first detected at 6 weeks post-MNU, and persisted throughout the latent period. However, untreated animals showed no increases in c-myc transcripts at the time intervals examined. Another nuclear oncogene, c-fos, did not display a similar change in RNA transcription during the latent period.^ These results supports the hypothesis that MNU-induced and spontaneous tumors develop by multi-step pathways which are distinct with respect to the target cell population affected. Clonal emergence and c-myc deregulation are important steps in the development of both MNU-induced and spontaneous tumors, but the onset of these events is later in spontaneous tumor development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While prior studies have focused on naïve (CD45RA+CD27+) and early stage memory (CD45RA-CD27+) CD8+ T cells, late memory CD8+ T cells (CD45RA+CD27) have received less interest because this subset of T cells is generally recognized as effectors, which produce IFNγ (but no IL-2) and perforin. However, multiple studies suggest that late memory CD8+ T cells may provide inadequate protection in infectious diseases and cancer models. To better understand the unique function of late memory CD8+ T cells, I optimized multi-color flow cytometry techniques to assess the cytokine production of each human CD8+ T cell maturation subset. I demonstrated that late memory CD8+ T cells are the predominant producer of CC chemokines (e.g. MIP-1β), but rarely produce IL-2; therefore they do not co-produce IL-2/IFNγ (polyfunctionality), which has been shown to be critical for protective immunity against chronic viral infection. These data suggest that late memory CD8+ T cells are not just cytotoxic effectors, but may have unique functional properties. Determining the molecular signature of each CD8+ T cell maturation subset will help characterize the role of late memory CD8+ T cells. Prior studies suggest that ERK1 and ERK2 play a role in cytokine production including IL-2 in T cells. Therefore, I tested whether differential expression of ERK1 and ERK2 in CD8+ T cell maturation subsets contributes to their functional signature by a novel flow cytometry technique. I found that the expression of total ERK1, but not ERK2, is significantly diminished in late memory CD8+ T cells and that ERK1 expression is strongly associated with IL-2 production and CD28 expression. I also found that IL-2 production is increased in late memory CD8+ T cells by over-expressing ERK1. Collectively, these data suggest that ERK1 is required for IL-2 production in human CD8+ T cells. In summary, this dissertation demonstrated that ERK1 is down-regulated in human late memory CD8+ T cells, leading to decreased production of IL-2. The data in this dissertation also suggested that the functional heterogeneity in human CD8+ T cell maturation subsets results from their differential ERK1 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune dysfunction is encountered during spaceflight. Various aspects of spaceflight, including microgravity, cosmic radiation, and both physiological and psychological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. Clinostatic RWV bioreactors that simulate aspects of microgravity were used to analyze the response of human PBMC to polyclonal and oligoclonal activation. PHA responsiveness in the RWV bioreactor was almost completely diminished. IL-2 and IFN-$\gamma$ secretion was reduced whereas IL-1$\beta$ and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Antigen specific T cell activation, including the mixed-lymphocyte reaction, tetanus toxoid responsiveness, and Borrelia activation of a specific T cell line, was also suppressed in the RWV bioreactor.^ The role of altered culture conditions in the suppression of T cell activation were considered. Potential reduced cell-cell and cell-substratum interactions in the RWV bioreactor may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions was not affected. Furthermore, increasing cell-population density, and therefore cell-cell interactions, in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Finally, activation of purified T cells with crosslinked CD2/CD28 or CD3/CD28 antibody pairs, which does not require costimulation through cell-cell contact, was completely suppressed in the RWV bioreactor suggesting a defect internal to the T cell.^ Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation in simulated microgravity, there is a specific dysfunction within the T cell involving the signaling pathways upstream of PKC activation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrin adhesion molecules have both positive and negative potential in the regulation of peripheral blood T cell (PB T cell) activation, yet their mechanism of action in the mediation of human T lymphocyte function remains largely undefined. The goals of this study then were to elucidate integrin signaling mechanisms in PB T cells.^ By ligating $\beta$1 integrins with mAb 18D3, it was demonstrated that costimulation of PB T cell proliferation induced by coimmobilizing antibodies specific for $\beta$1, $\beta$2, and $\beta$7 integrin subfamilies in conjunction with the anti-CD3 mAb OKT3 was inhibited. Costimulation of T cell proliferation induced by non-integrins CD4, CD26, CD28, CD44, CD45RA, or CD45RO was unaffected. Inhibition of costimulation correlated with diminished IL-2 production. In his manner, $\beta$1 integrins could regulate heterologous integrins of the $\beta$2 and $\beta$7 subfamilies in a transdominant fashion. It was also demonstrated that integrin costimulation of T cell activation was acutely sensitive to the structural conformation of $\beta$1 integrins. Using the cyclic hexapeptide CWLDVC (TBC772, which is based on the $\alpha4\beta1$ integrin binding site in fibronectin) in soluble form, it was shown that integrins locked into a conformation displaying a neo-epitope called the ligand induced binding site (LIBS) recognized by mAb 15/7 were inhibited from sending mitogenic signals to T cells. When BSA-conjugated TBC772 was coimmobilized with anti-CD3 mAb OKT3, costimulation of proliferation occurred. This suggested that temporally uncoupling integrin receptor occupancy from receptor crosslinking inhibited $\beta$1 integrin signaling mechanisms. When subsets of PB T cells were examined to determine those initially activated by integrins within 6 hours of activation, costimulation induced intracellular accumulation of IL-2 predominantly in the CD4$\sp+$ and CD45RO$\sp+$ T cell subsets. This was similar to a number of PB T cell costimulatory molecules including CD26, CD43, CD44. Only CD28 costimulated IL-2 production from both CD45RA$\sp+$ and CD45RO$\sp+$ subpopulations.^ The GTPase Rho has been implicated in regulating integrin mediated stress fiber formation and anchorage dependent growth in fibroblasts, so studies were initiated to determine if Rho played a role in integrin dependent T cell function. In order to perform this, a technique based on scrape-loading was developed to incorporate macromolecules into PB T cells that maintained their functional activity. With this technique, C3 exoenzyme from Clostridium botulinum was incorporated into PB T cells. C3 ADP-ribosylates Rho proteins on Asn$\sp{41},$ which is in close proximity to the Rho effector domain, rendering it inactive. It was demonstrated that functional Rho is not required for basal or upregulated PB T cell adhesion to $\beta$1 integrin substrates, however PB T cell homotypic aggregation induced by PMA, which is an event mediated predominantly by the integrin $\rm\alpha L\beta2,$ was delayed. PB T cells lacking Rho function displayed altered cell morphology on $\beta$1 integrin ligands, producing stellate, dendritic-like pseudopodia. Rho activity was also found to be required for integrin dependent costimulation of proliferation. When intracellular accumulation of IL-2 was measured, inactivation of Rho prevented both integrin and CD28 costimulatory activity. Rho was identified to lie upstream of signals mediating PKC activation and Ca$\sp{++}$ fluxes, as PMA and ionomycin activation of PB T cells was unaffected by the inactivation of Rho. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In normal lymphocytes an “inside-out” signal up-regulating integrin adhesion is followed by a ligand mediated “outside-in” signal for cell spreading. Although PKC mediates both events, distinct roles were found for different PLCs. The inhibition of phosphatidylinositol specific PLC decreased both cell adhesion and spreading on fibronectin in T cell receptor/CD28 activated peripheral blood T cells. However, inhibition of phosphatidylcholine specific PLC only blocked cell spreading and did not affect adhesion, indicating that “inside-out” signaling for the integrin α4β1 proceeds through phosphatidylinositol specific PLC and PKC, while the “outside-in” signal utilizes phosphatidylcholine specific PLC and PKC. Furthermore, β1 integrin chain mediated morphological changes in the T lymphocytic cell line HPB-ALL directly paralleled PKA activation, treatment of these cells with an inhibitory anti-β1 antibody blocked PKA activation and cell spreading, and this inhibition could be overcome by activating adenylate cyclase. Furthermore, inhibition of PKA was found to decrease the overall strength of cell adhesion or cellular avidity without affecting individual receptor affinity for soluble ligand. ^ When HPB-ALL cells interact with immobilized FN, two separate morphological phenotypes can be induced. Some cells flattened their cell body into a triangular shape and begin to migrate, while others extended a pseudopod from their stationary cell body. This second morphology recapitulates the shape changes observed during transendothelial migration. During these morphological changes, α4β1 integrins are internalized into endocytic vesicles that ultimately accumulate at the juncture between the cell body and an extending pseudopod. From this juncture, they are rapidly transported down the length of the pseudopod to its most distal end. ^ In addition to an accumulation of integrin containing vesicles, the pseudopod base was found to have increased amounts of the small GTPase RhoA and active PKA. The inhibition of PKA or RhoA resulted in lymphocytes with similar aberrant stellate morphologies. Furthermore, inhibition of PKA blocked the α4β1 mediated phosphorylation of RhoA. The co-localization of active PKA, RhoA and integrin containing endocytic vesicles indicates that integrin triggering can cause the rapid redistribution and activation of key signaling intermediates and raises the possibility that regulation of lymphocyte morphology by PKA and RhoA is through adhesion receptor recycling. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epstein-Barr virus is a herpes virus distinguished by its remarkable specificity for the B lymphocyte of humans and certain other primates. Although the transformation process is very efficient, is has become clear that only a fraction of B lymphocytes is susceptible. Therefore the question may be raised if transformation is related to B cell stage of activation. B cells were purified from peripheral blood mononuclear cells by the removal of monocytes using elutriation and sheep red blood cell rosetting to remove T cells. Retesting B cells were purified using discontinuous Percoll gradients. Activation of resting cells for 24 hours with anti-mu or Staphylococcus aureus Cowan I (SAC) resulted in transition of susceptible cells into the G(,1) phase of the cell cycle as shown by an increase in cell size, an increase in uridine incorporation and an increase in sensitivity to B cell growth factor (BCGF). Entry into S phase was achieved by extending the period of activation to 48-96 hr as shown by an increase in thymidine incorporation. By this criterion, SAC activated cells entered S phase on day 2 and anti-mu treated cells on day 3. Control (G(,0)) cells and cells activated for varying lengths of time (G(,1), G(,1) plus S) were exposed to EBV and plated in a limiting dilution assay to determine the frequency of EBV-transformable cells. Control cells and cells activated for 24 hr had a precursor frequency of 1% to 2%. With continued activation, however, precursor frequency decreased as a function of the duration of activation. The decrease in frequency of transformable cells correlated with the entry of the population into S phase. The transformation frequency in the SAC-treated population was reduced twenty-fold on day 4, whereas in the anti-mu treated population it was reduced ten-fold. Treating cells with BCGF in conjunction with low concentrations of anti-mu decreased the transformation frequency to levels lower than anti-mu alone, further suggesting that entry into S phase is accompanied by a reduction in transformability. These results indicate that resting B cells are highly susceptible to transformation and that with in vitro activation into the cell cycle B cells become progressively insensitive to EBV. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research characterized a serologically indistinguishable form of HLA-DR1 that: (1) cannot stimulate some DR1-restricted or specific T-lymphocyte clones; (2) displays an unusual electrophoretic pattern on two dimensional gels; and (3) is marked by a polymorphic restriction site of the alpha gene. Inefficient stimulation of some DR1-restricted clones was a property of DR1$\sp{+}$ cells that shared HLA-B14 on the same haplotype and/or were carriers of 21-hydroxylase (21-OH) deficiency. Nonclassical 21-OH deficiency frequently demonstrates genetic linkage with HLA-B14;DR1 haplotypes and associates with duplications of C4B and one 21-OH gene. Cells having both stimulatory (DR1$\sb{\rm n}$) and nonstimulatory (DR1$\sb{\rm x}$) parental haplotypes did not mediate proliferation of these clones. However, heterozygous DR1$\sb{\rm x}$, 2 and DR1$\sb{\rm x}$, 7 cells were efficient stimulators of DR2 and DR7 specific clones, respectively, suggesting that a trans acting factor may modify DR1 alleles or products to yield a dominant DR1$\sb{\rm x}$ phenotype. Incompetent stimulator populations did not secrete an intercellular soluble or contact dependent suppressor factor nor did they express interleukin-2 receptors competing for T-cell growth factors. Two dimensional gel analysis of anti-DR immunoprecipitates revealed, in addition to normal DR$\alpha$ and DR$\beta$ chains, a 50kD species from DR1$\sb{\rm x}$ but not from the majority of DR1$\sb{\rm n}$ or non-DR1 cells. The 50kD structure was stable under reducing conditions in SDS and urea, had antigenic homology with DR, and dissociated after boiling into 34kD and 28kD peptide chains apparently identical with DR$\alpha$ and DR$\beta$ as shown by limited digest peptide maps. N-linked glycosylation and sialation of DRgp50 appeared to be unchanged from normal DR$\alpha$ and DR$\beta$. Bg1II digestion and $DR\alpha$ probing of DR1$\sb{\rm x}$ genomic DNA revealed a 4.5kb fragment while DR1$\sb{\rm n}$ DNA yielded 3.8 and 0.76kb fragments; all restriction sites mapped to the 3$\sp\prime$ untranslated region of $DR\alpha$. Collectively, these data suggest that DRgp50 represents a novel combinatorial association between constitutive chains of DR that may interfere with or compete for normal T cell receptor recognition of DR1 as both an alloantigen and restricting element. Furthermore, extensive chromosomal abnormalities previously mapped to the class III region of B14;DR1 haplotypes may extend into the adjacent class II region with consequent intrusion on immune function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell lymphomas from AKR mice were studied to determine their potential as a model of T-cell differentiation. Homogeneous tumor cell lines have been used as model to study normal lymphocyte subpopulations, including differentiation lineages, functional properties, and the inducibility to maturation. The underlying concept is that each lymphoid tumor represents a monoclonal neoplastic proliferation of a discrete lymphoid subpopulation arrested at a particular differentiation stage.^ Individual tumors were analyzed to determine the extent of intertumor heterogeneity, and to determine whether lymphomas represented different thymocyte subsets, by determining the cell-surface antigenic phenotype, PNA-binding capacity, and terminal deoxynucleotidyl transferase (TdT) activity. Splenic and thymic tumor cells were compared to determine if the particular lymphoid microenvironment influenced T-cell marker expression. Several of the lymphomas were passaged in syngeneic hosts to verify the original tumor phenotype and to assess the stability of the cell surface and TdT phenotype after transplantation.^ Lymphomas were adapted to in vitro culture to determine whether the T-cell phenotype was maintained in the absence of the host microenvironment. Clonal progeny were analyzed and compared with each other and with parent cell lines to determine the extent of intratumor heterogeneity in this lymphoma system. Parent and cloned cell lines were passaged in vivo to determine whether alterations in surface phenotype occurred after transplantation.^ Our investigation has verified that most spontaneous AKR lymphomas phenotypically resemble known T-cell subsets, including both immature and mature thymic subpopulations. The in vitro lines, however, expressed a highly unstable phenotype in culture that included loss of Ly-1 and Ly-2 antigen expression. After transplantation in vivo, the in vitro lines exhibited alterations in phenotype, including re-expression of Ly antigen on some lymphomas. The inducibility of T-cell antigen markers on tumor cell lines passaged in vivo suggests that the in vitro lines may serve as a possible model system to study the molecular events involved in gene expression in the T-cell system. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of studies were undertaken to analyze and compare various aspects of murine class I glycoproteins. An initial area of investigation characterized the Qa-1 alloantigens using two-dimensional gel electrophoresis. Analysis of the products of the Qa-1('b), Qa-1('c) and Qa-1('d) alleles indicated that these were distinct molecules as determined by their lack of comigration upon comparative two-dimensional gel analysis. The importance of asparagine-linked glycosylation in the cell surface expression of class I molecules was also examined. These studies employed tunicamycin, an inhibitor of N-linked glycosylation. Tunicamycin treatment of activated T lymphocytes diminished the surface expression of Qa-1 to undetectable levels; the levels of other class I molecules exhibited little or no decrease. These results indicated that N-linked glycosylation has a differential importance in the cell surface expression of various class I molecules. The molecular weight diversity of class I molecules was also investigated. Molecular weight determination of both the fully glycosylated and unglycosylated forms of H-2 and Qa/Tla region encoded molecules established that there is a significant variation in the sizes of these forms of various class I molecules. The most significant difference ((TURN)9,000 daltons) exists between the unglycosylated forms of H-2K('b) and Qa-2, suggesting that the structural organization of these two molecules may be very different. A comparative two-dimensional gel analysis of various class I glycoproteins isolated from resting and activated T and B lymphocytes indicated that class I molecules expressed on activated T cells exhibited an isoelectrophoretic pattern that was distinct from the isoelectrophoretic pattern of class I molecules expessed on the other cell populations. This difference was attributed to a lower sialic acid content of the molecules expressed on activated T cells. Analysis of cell homogenates determined that activated T cells contained a higher level of endogenous neuraminidase activity than was detected in the other populations, suggesting that this may be the basis of the lower sialic acid content. The relationship of the Qa-4 and Qa-2 alloantigens was also examined. It was established that upon mitogen activation, the expression of Qa-4 was greatly decreased, whereas Qa-2 expression was not decreased. However, an anti-Qa-2 monoclonal antibody blocked the binding of an anti-Qa-4 monoclonal antibody to resting cells. These studies established that Qa-4 is a determinant restricted to resting cells, which is closely associated on the surface with the Qa-2 molecule. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence suggests that sex-based differences in immune function may predispose women to numerous hypersensitivity conditions such as Systemic lupus erythematosus (SLE), Hashimoto's thyroiditis and asthma. To date, the exact mechanisms of sexual dimorphism in immunity are not fully characterized but sex hormones such as 17-β estradiol (E2) and progesterone (PR) are believed to be involved. Since E2 and PR may modulate the production of critical regulatory cytokines, we sought to characterize their effects on the in vitro human type-1/type-2 cytokine balance. We hypothesized that E2 and/or PR vary cytokine production and influence costimulatory molecule expression and apoptosis. We first described the effect of E2 and/or PR on type-1 (IFN-γ and IL-12) and type-2 (IL-4 and IL-10) cytokine production by human peripheral blood mononuclear cells (PBMC) treated with various T-lymphocyte and monocyte stimuli. E2 and/or PR were each used at concentrations similar to those found at the maternal-fetal interface during pregnancy. At this dose, E2 increased IFN-γ and IL-12 production and PR decreased IFN-γ production and tended to increase IL-4 production. Furthermore, the combination of E2+PR decreased IL-12 production. This suggests that E2 shifts the type-1/type-2 cytokine balance towards a type-1 response and that PR and E2+PR shift the balance towards a type-2 response. Next, we used intracellular cytokine detection to demonstrate that E2 and/or PR are capable of altering cytokine production of CD3+ T-cells and the CD3+CD4+ and CD3+CD8+ subsets. In addition, we used the H9 T-lymphocyte cell line and the THP-1 monocyte cell line to show that E2 and/or PR can induce cytokine effects in both T-cells and monocytes independent of their interaction. Lastly, we determined the effect of E2 and/or PR on costimulatory molecule expression and apoptosis as potential mechanisms for the cytokine-induced alterations. E2 increased and PR decreased CD80 expression on THP-1 cells and PR and E2+PR decreased CD28 expression in PBMC and Jurkat cells. Furthermore, E2, PR and E2+PR increased Fas-mediated apoptosis in Jurkat cells and E2 increased FasL expression on THP-1 cells. Thus, E2 and/or PR may alter the cytokine balance by modulating the CD28/CD80 costimulatory pathway and apoptosis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses the questions of whether the frequency of generation and in vivo cross-reactivity of highly immunogenic tumor clones induced in a single parental murine fibrosarcoma cell line MCA-F is more closely related to the agent used to induce the Imm$\sp{+}$ clone or whether these characteristics are independent of the agents used. These questions were addressed by treating the parental tumor cell line MCA-F with UV-B radiation (UV-B), 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), or 5-aza-2$\sp\prime$-deoxycytidine (5-azaCdR). The frequency of Imm$\sp{+}$ variant generation was similarly high for the three different agents, suggesting that the frequency of Imm$\sp{+}$ generation was related more closely to the cell line than to the inducing agent used. Cross-reactivity was tested with two Imm$\sp{+}$ clones from each treatment group in a modified immunoprotection assay that selectively engendered antivariant, but not antiparental immunity. Under these conditions each clone, except one, immunized against itself. The MNNG-induced clones engendered stronger antivariant immunity but a weaker variant cross-reactive immunity could also be detected.^ This study also characterized the lymphocyte populations responsible for antivariant and antiparental immunity in vivo. Using the local adoptive transfer assay (LATA) and antibody plus complement depletion of T-cell subsets, we showed that immunity induced by the Imm$\sp{+}$ variants against the parent MCA-F was transferred by the Thy1.2$\sp{+}$, L3T4a$\sp{+}$, Lyt2.1$\sp{-}$ (CD4$\sp{+}$) population, without an apparent contribution by Thy1.2$\sp{+}$, L3T4a$\sp{-}$, Lyt2.1$\sp{+}$ (CD8$\sp{+}$) cells. A role for Lyt2.1$\sp{+}$T lymphocytes in antivariant, but not antiparent immunity was supported by the results of LATA and CTL assays. Immunization with low numbers of viable Imm$\sp{+}$ cells, or with high numbers of non viable Imm$\sp{+}$ cells engendered only antivariant immunity without parental cross-protection. The associative recognition of parental antigens and variant neoantigens resulting in strong antiparent immunity was investigated using somatic cells hybrids of Imm$\sp{+}$ variants of MCA-F and an antigenically distinct tumor MCA-D. An unexpected result of these latter experiments was the expression of a unique tumor-specific antigen by the hybrid cells. These studies demonstrate that the parental tumor-specific antigen and the variant neoantigen must be coexpressed on the cell surface to engender parental cross-protective immunity. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^