18 resultados para T cell clones

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In our studies we have focused on the issue of variability and diversity of the $\gamma$ (or $\delta)$ chain T cell receptor (TCR) genes by studying cDNA transcripts in peripheral blood mononuclear cells or $\gamma\delta$ TCR+ T cell clones. The significance of these studies lies in the better understanding of the molecular biology of the $\gamma\delta$ T cell receptor as well as in answering the question whether certain molecular forms predominate in $\gamma\delta$ T cells exhibiting specific immunologic functions. We establish that certain $\gamma$-chain TCR genes exhibit particular patterns of rearrangements in cDNA transcripts in normal individuals. V$\gamma$I subgroup were shown to preferentially rearrange to J$\gamma$2C$\gamma$2 gene segments. These preferential VJC rearrangements, may have implications regarding the potential for diversity and polymorphism of the $\gamma$-chain TCR gene. In addition, the preferential association of V$\gamma$I genes with J$\gamma$2C$\gamma$2, which encode a non-disulfide-linked $\gamma\delta$ TCR, suggests that $\gamma$ chains utilizing V$\gamma$I are predominantly expressed as non-disulfide-linked $\gamma\delta$ TCR heterodimers. The implications of this type of expression remain to be determined. We identified two alternative splicing events of the $\gamma$-chain TCR genes occurring in high frequency in all the normal individuals examined. These events may suggest additional mechanisms of regulation and control as well as diversification of $\gamma\delta$ TCR gene expression. The question whether particular forms of $\gamma$ or $\delta$-chain TCR genes are involved in HLA Class I recognition by specific $\gamma\delta$ cytotoxic T cell clones was addressed. Our results indicated that the T cell clones expressed identical $\gamma$ but distinct $\delta$-chains suggesting that the specificity for recognition of HLA-A2 or HLA-A3 may be conferred by the $\delta$-chain TCR. The issue of the degree of diversity and polymorphism of the $\delta$-chain TCR genes in a patient with a primary immunodeficiency (Omenn's syndrome) was addressed. A limited pattern of rearrangements in peripheral blood transcripts was found, suggesting that a limited $\gamma\delta$ TCR repertoire may be expressed in this particular primary immunodeficiency syndrome. Overall, our findings suggest that $\delta$-chain TCR genes exhibit the potential for significant diversity and that there are certain preferential patterns of expression that may be associated with particular immunologic functions. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A cloned nontumorigenic prostatic epithelial cell line, NbE-1.4, isolated from Noble (nbl/crx) rat ventral prostate, was used to examine the potential role of activated myc and neu oncogenes in prostate carcinogenesis. Transfection of SV40 promoter/enhancer driven constructs containing either v-myc, truncated c-myc, or neu-T (activated neu) oncogenes was accomplished using calcium phosphate-mediated DNA transfer. Cells were cotransfected, as necessary, with pSV2neo, allowing for selection of positive clones using the antibiotic geneticin (G418). G418 resistant colonies were pooled in some cases or limiting dilution exclusion cloned in others as described. Transfection of NbE-1.4 cells with activated myc oncogenes resulted only in the partial transformation. These cells display an altered morphology and decreased dependence on serum factors in vitro; however, saturation density, soft agar colony formation and growth assay in male athymic nude mice were all negative. Transfection and overexpression of NbE-1.4 cells with an activated neu oncogene alone resulted in tumorigenic conversion. Cell transformation was evident following an examination of the altered cellular morphology, an increased soft agar colony formation, and an acquisition of a tumorigenic potential when injected s.c. into male athymic nude mice. neu-transformed NbE-1.4 cells displayed elevated activity of the neu receptor tyrosine kinase. Furthermore, qualitative changes in tyrosine phosphorylated proteins were found in neu transformed cell clones. These changes were associated with elevated expression of mRNAs for laminin $\beta$1, $\beta$2, and procollagen type IV. The expression of fibronectin and E-cadherin, which are often lost during tumorigenesis, did not correlate with the tumorigenic phenotype. Therefore, it appears that neu oncogene overexpression has been found to be associated with the transformation of rat prostatic epithelial cells, presumably through alterations in gene expression that regulate extracellular matrix. The possible interrelationship and functional significance between neu oncogene expression and the elevated extracellular matrix gene expression is discussed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There have been multiple reports which indicate that variations in $\beta$AR expression affect the V$\sb{\rm max}$ observed for the agonist-dependent activation of adenylylcyclase. This observation has been ignored by most researchers when V$\sb{\rm max}$ values obtained for wild type and mutant receptors are compared. Such an imprecise analysis may lead to erroneous conclusions concerning the ability of a receptor to activate adenylylcyclase. Equations were derived from the Cassel-Selinger model of GTPase activity and Tolkovsky and Levitzki's Collision Coupling model which predict that the EC$\sb{50}$ and V$\sb{\rm max}$ for the activation of adenylylcyclase are a function of receptor number. Experimental results for L cell clones in which either hamster or human $\beta$AR were transfected at varying levels showed that EC$\sb{50}$ decreases and V$\sb{\rm max}$ increases as receptor number increases. Comparison of these results with simulations obtained from the equations describing EC$\sb{50}$ and V$\sb{\rm max}$ showed a close correlation. This documents that the kinetic parameters of adenylylcyclase activation change with the level of receptor expression and relates this phenomenon to a theoretical framework concerning the mechanisms involved in $\beta$AR signal transduction.^ One of the terms used in the equations which expressed the EC$\sb{50}$ and V$\sb{\rm max}$ as a function of receptor number is coupling efficiency, defined as $\rm k\sb1/k\sb{-1}$. Calculation of $\rm k\sb1/k\sb{-1}$ can be accomplished for wild type receptors with the easily measured experimental values of agonist K$\sb{\rm d}$, EC$\sb{50}$ and receptor number. This was demonstrated for hamster $\beta$AR which yielded a coupling efficiency of 0.15 $\pm$ 0.003 and human $\beta$AR which yielded a coupling efficiency of 0.90 $\pm$ 0.031. $\rm k\sb1/k\sb{-1}$ replaces the traditional qualitative evaluation of the ability to activate adenylylcyclase, which utilizes V$\sb{\rm max}$ without correction for variation in receptor number, with a quantitative definition that more accurately describes the ability of $\beta$AR to couple to G$\sb{\rm s}$.^ The equations which express the EC$\sb{50}$ and V$\sb{\rm max}$ for adenylylcyclase activation as a function of receptor number and coupling efficiency were tested to determine whether they could accurately simulate the changes seen in these parameters during desensitization. Data from original desensitization experiments and data from the literature (24,25,52,54,83) were compared to simulated changes in EC$\sb{50}$ and V$\sb{\rm max}$. In a variety of systems the predictions of the equations were consistent with the changes observed in EC$\sb{50}$ and V$\sb{\rm max}$. In addition reductions in the calculated value of $\rm k\sb1/k\sb{-1}$ was shown to correlate well with $\beta$AR phosphorylation and to be minimally affected by sequestration and down-regulation. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic analysis is a powerful method for analyzing the function of specific genes in development. I sought to identify novel genes in the mouse using a genetic analysis relying on the expression pattern and phenotype of mutated genes. To this end, I have conducted a gene trap screen using the vector $\rm SA\beta geo,$ a promoterless DNA construct that encodes a fusion protein with lacZ and neomycin resistance activities. Productive integration and expression of the $\beta$geo protein in embryonic stem (ES) cells requires integration into an active transcription unit. The endogenous regulatory elements direct reporter gene expression which reflects the expression of the endogenous gene. Of eight mouse lines generated from gene trap ES cell clones, four showed differential regulation of $\beta$geo activity during embryogenesis. These four were analyzed in more detail.^ Three of the lines RNA 1, RNA2 and RNA 3 had similar expression patterns, within subsets of cells in sites of embryonic hematopoiesis. Cloning of the trapped genes revealed that all three integrations had occurred within 45S rRNA precursor transcription units. These results imply that there exists in these cells some mechanism responsible for the efficient production of the $\beta$geo protein from an RNA polymerase I transcript that is not present in most of the cells in the embryo.^ The fourth line, GT-2, showed widespread, dynamic expression. Many of the sites of expression were important classic embryonic induction systems. Cloning of the sequences fused to the $5\sp\prime$ end of the $\beta$geo sequence revealed that the trapped gene contained significant sequence homology with a previously identified human sequence HumORF5. An open reading frame of this sequence is homologous to a group of eukaryotic proteins that are members of the RNA helicase superfamily I.^ Analysis of the gene trap lines suggests that potentially novel developmental mechanisms have been uncovered. In the case of RNA 1, 2 and 3, the differential production of ribosomal RNAs may be required for differentiation or function of the $\beta$geo positive hematopoietic cells. In the GT-2 line, a previously unsuspected temporal and spatial regulation of a putative RNA helicase implies a role for this activity during specific aspects of mouse development. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Red Blood cell mediated and glass needle mediated microinjection technology was used to introduce macromolecules into mammalian somatic cells. The biological activities of DNA synthesis inducing factor(s) (Chapter 1), mitotic factor(s) (Chapter 2), and DNA coding for ovalbumin and thymidine kinase (Chapter 3) were studied following injection into mammalian somatic cells.^ Chapter 1. A cell undergoing DNA replication (S phase) contains a factor(s) that induces DNA synthesis prematurely in a G(,1) nucleus when an S phase cell is fused to a G(,1) cell. An assay for the active factor(s) was developed in which a mixture of s phase extract loaded red blood cells (RBC) and synchronous G(,1) HeLa cells was centrifuged onto Concanavalin A (Con A) treated coverslips and fused by PEG. This technique is called "Centrifusion". The synchronous G(,1) HeLa cells injected with S phase extract initiated DNA synthesis earlier than the control G(,1) cells mock injected with RBC loaded with buffer.^ Chapter 2. It has been demonstrated that fusion between a mitotic and an interphase cell usually leads to breakdown of the interphase nucleus, followed by condensation of the interphase chromatin into discrete chromosomes, a process termed premature chromosome condensation. I wanted to develop an assay for the mitotic factor(s) that induces premature chromosome condensation. Experiments were performed utilizing glass needle mediated microinjection of HeLa cell mitotic extract into interphase somatic mammalian cells in an attempt to induce premature chromosome condensation. However, I was not able to induce premature chromosome condensation in the interphase cells, probably because of an inability to introduce sufficient mitotic factor(s) into the cells.^ Chapter 3. A recombinant plasmid containing the chicken ovalbumin gene and three copies of the Herpes thymidine Kinase gene (pOV12-TK) was introduced into mouse LMTK('-) cell nuclei using glass needle mediated gene transfer resulting in LMTK('+) clones that were selected for in HAT medium. Restriction enzyme analysis of the high molecular weight DNA from 6 HAT medium survivor cell clones revealed the presence of one or at best only a few copies of the 12kb ovalbumin gene per mouse genome. Further analysis showed the ovalbumin DNA was not rearranged and was associated with high molecular weight mouse cell DNA. Each of the analyzed cell clones produced ovalbumin demonstrating that the biological activity of the microinjected ovalbumin was retained. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four 8-azaguanine (AG)-resistant and 5-bromodeoxyuridine (BUdR)-resistant clones of a mouse mammary adenocarcinoma cell line, RIII 7387, were developed and analyzed for their tumorigenic properties, in vitro characteristics, and virus expression. These characteristics were analyzed for relationships of any of the cellular parameters and the ability of these lines to produce tumors in syngeneic animals.^ The results of this study demonstrated that the parental line consists of a heterogeneous population of cells. Doubling times, saturation densities, and 2-deoxy-D-glucose uptake varied between sublines. In addition, while all sublines were found to express both B-type and C-type viral antigenic markers, levels of the major B-type and C-type viral proteins varied in the subclones. The sublines also differed markedly in their response to the presence of dexamethasone, glutathione, and insulin in the tissue culture medium.^ Variations in retrovirus expression were convirmed by electron microscopy. Budding and extracellular virus particles were seen in the majority of the cell lines. Virus particles in one of the BUdR-resistant lines, BUD9, were found however, only in inclusions and vacuoles. The AG-resistant subline AGE11 was observed to be rich in intracytoplasmic A particles. The examination of these cell lines for the presence of retroviral RNA-dependent DNA polymerase (RT) activity revealed that some B-type RT activity could be found in the culture fluid of most of the cell lines but that little C-type RT activity could be found suggesting that the C-type virus particles expressed by these RIII clones contain a defective RT.^ Tumor clones also varied in their ability to form tumors in syngeneic RIII mice. Tumor incidence ranged from 50% to 100%. The majority of the tumors regressed within 30 days post infection.^ Statistical analysis indicated that while these clones varied in their characteristics, there was no correlation between the ability of these cell lines to form tumors in syngeneic mice and any of the other characteristics examined.^ These studies have confirmed and extended the growing evidence that tumors, regardless of their natural origin, consist of heterogeneous subpopulations of cells which may vary widely in their in vitro growth behavior, their antigenic expression, and their malignant properties. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects in apical-basal cell polarity and abnormal expression of cell polarity determinants are linked to human cancer. Loss of polarity is highly correlated with malignancy. In Drosophila, perturbation of apical-basal polarity, including overexpressing the apical determinant Crumbs, can lead to uncontrolled tissue growth. Cells mutant for the basolateral determinant scribble overproliferate and can form neoplastic tumors. Interestingly, scribble mutant clones that arise in wild-type tissues are eliminated and therefore do not manifest their tumorigenic potential. However, the mechanisms by which cell polarity coordinates with growth control pathways in developing organs to achieve appropriate organ size remain obscure. To investigate the function of apical determinants in growth regulation, I investigated the mechanism by which the apical determinant Crumbs affects growth in Drosophila imaginal discs. I found that crumbs gain and loss of function cause overgrowth and induction of Hippo target genes. In addition, Crumbs is required for the proper localization of Expanded, an upstream component of the Hippo pathway. Furthermore, we uncoupled the cell polarity and growth control function of Crb through structure-functional analysis. Taken together, our data identify a role of Crb in growth regulation specifically through modulation of the Hippo pathway. To further explore the role of polarity in growth control, I investigated how cells mutant for basolateral determinants are eliminated by using patches of cells mutant for scribble (scribble mutant clones) as a model system. We found that competitive cell-cell interactions eliminate tumorigenic scribble cells by modulation of the Hippo pathway. The regulation of Hippo signaling is required and sufficient to restrain the tumorous growth of scribble mutant cells. Artificially increasing the relative fitness of scribble mutant cells unleashes their tumorigenic potential. Therefore, we have identified a novel tumor-suppression mechanism that depends on signaling between normal and tumorigenic cells. These data identify evasion of cell competition as a critical step toward malignancy and illustrate a role for wild-type tissue in eliminating abnormal cells and preventing the formation of tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uridine-rich small nuclear (U snRNAs), with the exception of the U6 snRNA, are RNA polymerase II (RNAPII) transcripts. The mechanism of 3’ cleavage of snRNAs has been unknown until recently. This area was greatly advanced when 12 of the Integrator complex subunits (IntS) were purified in 2005 through their interaction with the C-terminal domain (CTD) of the large subunit (RpbI) of RNAPII. Subsequently, our lab performed a genome-wide RNAi screen that identified two more members of the complex that we have termed IntS13 and IntS14. We have determined that IntS9 and 11 mediate the 3’ cleavage of snRNAs, but the exact function of the other subunits remains unknown. However, through the use of a U7 snRNA-GFP reporter and RNAi knockdown of the Integrator subunits in Drosophila S2 cells, we have shown that all subunits are required for the proper processing of snRNAs, albeit to differing degrees. Because snRNA transcription takes place in the nucleus of the cell, it is expected that all of the Integrator subunits would exhibit nuclear localization, but the knowledge of discrete subnuclear localization (i.e. to Cajal bodies) of any of the subunits could provide important clues to the function of that subunit. In this study, we used a cell biological approach to determine the localization of the 14 Integrator subunits. We hypothesized that the majority of the subunits would be nuclear, however, a few would display distinct localization to the Cajal bodies, as this is where snRNA genes are localized and transcribed. The specific aims and results are: 1. To determine the subcellular localization of the 14 Integrator subunits. To accomplish this, mCherry and GFP tagged clones were generated for each of the 14 Drosophila and human Integrator subunits. Confocal microscopy studies revealed that the majority of the subunits were diffuse in the nucleus, however, IntS3 formed discrete subnuclear foci. Surprisingly, two of the subunits, IntS2 and 7 were observed in cytoplasmic foci. 2. To further characterize Integrator subunits with unique subcellular localizations. Colocalization studies with endogenous IntS3 and Cajal body marker, coilin, showed that these two proteins overlap, and from this we concluded that IntS3 localized to Cajal bodies. Additionally, colocalization studies with mCherry-tagged IntS2 and 7 and the P body marker, Dcp1, revealed that these proteins colocalize as well. IntS7, however, is more stable in cytoplasmic foci than Dcp1. It was also shown through RNAi knockdown of Integrator subunits, that the cytoplasmic localization of IntS2 and 7 is dependent on the expression of IntS1 and 11 in S2 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a human terato-carcinoma cell line, PA-1, the functional role of the oncogenes and tumor suppressor gene involved in the multistep process of carcinogenesis have been analyzed. The expression of AP-2 was strongly correlated with the susceptibility to ras transformation. The differential responsiveness to growth factors between stage 1 ras resistant cells and stage 2 ras susceptible cells was observed, indicating that the ability of stage 2 cells to respond to the mutated ras oncogenes in transformation correlated with the ability to be stimulated by certain growth factors. Using differential screening of cDNA libraries, a number of differentially expressed cDNA clones was isolated. One of those, clone 12, is overexpressed in ras transformed stage 3 cells. The amino acid sequence of clone 12 is almost identical to a mouse LLrep3 gene that was growth-regulated, and 78% similar to a yeast ribosomal protein S4. These results suggest that the S4 gene may be involved in regulation of growth. Clone 9 is expressed in stage 1 ras resistant cells (3.5-kb and 3.0-kb transcripts) but the expression of this clone in stage 2 ras susceptible cells and stage 3 ras-transformed cells is greatly diminished. The expression of this cDNA clone was increased to at least five fold in ras resistant cells and nontumorigenic hybrids treated with retinoic acid but not increased in retinoic acid treated ras susceptible cells, ras transformed cells and the tumorigenic segregants. Partial sequence of this clone showed no homology to the sequences in Genbank. These findings suggest that clone 9 could be a suppressor gene or the genes that are involved in the biochemical pathway of tumor suppression or neurogenic differentiation. The apparent pleiotropic effect of the loss of this suppressor gene function support Harris' proposal that tumor suppressor genes regulate differentiation. The tumor suppressor gene may act as negative regulator of tumor growth by controlling gene expression in differentiation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human x rodent somatic cell hybrids have played an important role in human genetics research. They have been especially useful for assigning genes to chromosomes and isolating DNA markers from specific regions of the human genome.^ By employing a combination of somatic cell genetic, recombinant DNA, and cytogenetic techniques, human DNA excision repair gene ERCC4 was mapped regionally to human 16p13.13-13.2, even though the gene has not been cloned. Human x Chinese hamster ovary (CHO) cell hybrids selected for human ERCC4 activity and containing 16p13.1-p13.3 as the only human genetic material were identified. These hybrids were used to order DNA markers located in 16p13.1-p13.3. New DNA markers physically close to ERCC4 were isolated from such hybrids. Using amplified human DNA from the hybrids as probe in fluorescent in situ hybridization, the short arm breakpoint in the chromosome 16 inversion associated with acute myelomonocytic leukemia (AMML) was found to be physically close to the ERCC4 gene. The physical mapping and eventually, the cloning of the ERCC4 gene, will benefit the understanding of the DNA repair system and the study of other important biomedical problems such as tumorigenesis.^ To facilitate the cloning of ERCC4 gene and, in general, the cloning of genes from any defined regions of the human genome, a method was developed for the direct isolation of human transcribed genes ffom somatic cell hybrids. cDNA was prepared from human x rodent hybrid by using consensus 5$\sp\prime$ splice site sequences as primers. These primers were designed to select immature, unspliced messenger RNA (still retaining species specific repeat sequences) as templates. Screening of a derived cDNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes. The usefulness of the splice site specific primers was analyzed and the cDNA synthesis conditions with these primers were optimized. The procedure was shown to be sensitive enough to clone weakly expressed genes. Studying the expression of the represented genes with the isolated clones was shown to be feasible. Such regional specific human gene fragments will be very valuable for many human genetic studies such as the search of inherited disease genes and the construction of a cDNA map of the human genome. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation examined the clonal dynamics of B-cell expression and evaluated the role of idiotype network interactions in shaping the expressed secondary B-cell repertoire. Three interrelated experimental approaches were applied. The first approach was designed to distinguish between regulatory influences controlled by the major histocompatibility complex (MHC) and regulatory influences controlled by non-MHC factors including the idiotype network. This approach consisted of studies on the clonal dynamics and heterogeneity of the expressed IgG antibody repertoire of BALB/c mice. The second approach involved the analysis of the clonal dynamics of antibody responses of outbred rabbits. This analysis was coupled with studies to detect the occurrence and activity of constituents of the idiotype network. In the third approach the transfer of rabbit lymphocytes from immunized donors to MHC matched naive recipients was used to examine the effects of recipient non-MHC immunoregulatory influences on the expression of donor memory B-cells. Although many memory B cells were unaffected by non-MHC influences, these data show that non-MHC immunoregulatory influences can affect the expression of B-cells in the secondary response of inbred mice and outbred rabbits. The results also indicate that most IgG antibody responses are heterogeneous and are characterized by a stable group of dominant clonotypes. Clonal dominance and B-cell memory were found to be established early in an immune response. The expression of B memory clones appeared to be favored over the expression of virgin B cells. The injection of anti-tetanus antibody induced the antigen independent production of anti-tetanus antibody, probably through idiotypic mechanisms. These results demonstrate that both antibody and antigen can affect the expressed B-ceIl repertoire. Thus, idiotypic interactions are capable of influencing the expression of B-cells and these findings support the existence and function of an idiotype network with strong immunoregulatory potential. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertebrate $\beta$-galactoside-binding lectins galectin-1 and galectin-3 have been proposed to function in diverse cellular processes such as adhesion, proliferation, differentiation, and tumorigenesis. Experiments were initiated to further study the functional properties of these molecules. A prostate cancer cell line, LNCaP, was identified which expressed neither galectin. This line was stably transfected with cDNA for either galectin-1 or galectin-3. The resultant clones were used to study effects on critical cell processes. LNCaP cells expressing galectin-1 on the surface were found to bind more rapidly than control lines to the human extracellular matrix proteins laminin and fibronectin, although overall binding was not increased. To analyze effects on differentiation, LNCaP cells were studied which had either been transfected with galectin-1 or which had been induced to express endogenous galectin-1 by treatment with the differentiation agent sodium butyrate. In both cases, cells displayed a slower rate of growth and increased rate of apoptosis. A transient decrease in expression of prostate specific antigen was seen in the butyrate treated cells but not in the transfected cells. To investigate the role of galectins in the process of malignant transformation and progression, immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded sections of human prostate tissue, the premalignant lesion prostatic intraepithelial neoplasia, primary adenocarcinoma of the prostate, and foci of metastatic prostate cancer. Galectin-1 expression was relatively constant throughout in contrast to galectin-3 which demonstrated significantly less expression in primary and metastatic tumors. LNCaP cells transfected with galectin-3 cDNA displayed lower proliferation rates, increased spontaneous apoptosis, and G1 growth phase arrest compared to controls. Four of six galectin-3 lines tested were less tumorigenic in nude mice than controls. The following conclusions are drawn regarding the role of galectin-1 and galectin-3 expression in the context of prostate cancer: (1) galectin-1 may participate in the early stages of cancer cell adhesion to extracellular matrix proteins; (2) galectin-1 expression results in a differentiated phenotype and may contribute to differentiation induction by butyrate; (3) galectin-3 expression correlates inversely with prostate cell tumorigenesis and prostate cancer metastasis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyomavirus enhancer activator 3 (PEA3) is a member of the Ets family of transcription factors. We demonstrated in a previous study that, through down-regulating the HER-2/neu oncogene at the transcriptional level, PEA3 can inhibit the growth and tumor development of HER-2/neu-overexpressing ovarian cancer cells. Here, we established stable clones of the human breast cancer cell line MDA-MB-361DYT2 that express PEA3 under the control of a tetracycline-inducible promoter. The expression of PEA3 in this cell line inhibited cell growth and resulted in cell cycle delay in the G1 phase independently of the HER-2/neu down-regulation. In an orthotopic breast cancer model, we showed that expression of PEA3 inhibited tumor growth and prolonged the survival of tumor-bearing mice. In a parallel experiment in another breast cancer cell line, BT474M1, we were unable to obtain stable PEA3-inducible transfectants, which suggests that PEA3 possessed a strong growth inhibitory effect in this cell line. Indeed, PEA3 coupled with the liposome SN2 demonstrated therapeutic effects in mice bearing tumors induced by BT474M1. These results provide evidence that the PEA3 gene could function as an antitumor and gene therapy agent for human breast cancers. ^