3 resultados para Synthetic control chart

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Gene expression is an important process whereby the genotype controls an individual cell’s phenotype. However, even genetically identical cells display a variety of phenotypes, which may be attributed to differences in their environment. Yet, even after controlling for these two factors, individual phenotypes still diverge due to noisy gene expression. Synthetic gene expression systems allow investigators to isolate, control, and measure the effects of noise on cell phenotypes. I used mathematical and computational methods to design, study, and predict the behavior of synthetic gene expression systems in S. cerevisiae, which were affected by noise. Methods I created probabilistic biochemical reaction models from known behaviors of the tetR and rtTA genes, gene products, and their gene architectures. I then simplified these models to account for essential behaviors of gene expression systems. Finally, I used these models to predict behaviors of modified gene expression systems, which were experimentally verified. Results Cell growth, which is often ignored when formulating chemical kinetics models, was essential for understanding gene expression behavior. Models incorporating growth effects were used to explain unexpected reductions in gene expression noise, design a set of gene expression systems with “linear” dose-responses, and quantify the speed with which cells explored their fitness landscapes due to noisy gene expression. Conclusions Models incorporating noisy gene expression and cell division were necessary to design, understand, and predict the behaviors of synthetic gene expression systems. The methods and models developed here will allow investigators to more efficiently design new gene expression systems, and infer gene expression properties of TetR based systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bisphosphonates represent a unique class of drugs that effectively treat and prevent a variety of bone-related disorders including metastatic bone disease and osteoporosis. High tolerance and high efficacy rates quickly ranked bisphosphonates as the standard of care for bone-related diseases. However, in the early 2000s, case reports began to surface that linked bisphosphonates with osteonecrosis of the jaw (ONJ). Since that time, studies conducted have corroborated the linkage. However, as with most disease states, many factors can contribute to the onset of disease. The aim of this study was to determine which comorbid factors presented an increased risk for developing ONJ in cancer patients.^ Using a case-control study design, investigators used a combination of ICD-9 codes and chart review to identify confirmed cases of ONJ at The University of Texas M. D. Anderson Cancer Center (MDACC). Each case was then matched to five controls based on age, gender, race/ethnicity, and primary cancer diagnosis. Data querying and chart review provided information on variables of interest. These variables included bisphosphonate exposure, glucocorticoids exposure, smoking history, obesity, and diabetes. Statistical analysis was conducted using PASW (Predictive Analytics Software) Statistics, Version 18 (SPSS Inc., Chicago, Illinois).^ One hundred twelve (112) cases were identified as confirmed cases of ONJ. Variables were run using univariate logistic regression to determine significance (p < .05); significant variables were included in the final conditional logistic regression model. Concurrent use of bisphosphonates and glucocorticoids (OR, 18.60; CI, 8.85 to 39.12; p < .001), current smokers (OR, 2.52; CI, 1.21 to 5.25; p = .014), and presence of diabetes (OR, 1.84; CI, 1.06 to 3.20; p = .030) were found to increase the risk for developing ONJ. Obesity was not associated significantly with ONJ development.^ In this study, cancer patients that received bisphosphonates as part of their therapeutic regimen were found to have an 18-fold increase in their risk of developing ONJ. Other factors included smoking and diabetes. More studies examining the concurrent use of glucocorticoids and bisphosphonates may be able to strengthen any correlations.^