3 resultados para Syntactic comprehension tasks
em DigitalCommons@The Texas Medical Center
Resumo:
Objective: To determine how a clinician’s background knowledge, their tasks, and displays of information interact to affect the clinician’s mental model. Design: Repeated Measure Nested Experimental Design Population, Sample, Setting: Populations were gastrointestinal/internal medicine physicians and nurses within the greater Houston area. A purposeful sample of 24 physicians and 24 nurses were studied in 2003. Methods: Subjects were randomized to two different displays of two different mock medical records; one that contained highlighted patient information and one that contained non-highlighted patient information. They were asked to read and summarize their understanding of the patients aloud. Propositional analysis was used to understand their comprehension of the patients. Findings: Different mental models were found between physicians and nurses given the same display of information. The information they shared was very minor compared to the variance in their mental models. There was additionally more variance within the nursing mental models than the physician mental models given different displays of the same information. Statistically, there was no interaction effect between the display of information and clinician type. Only clinician type could account for the differences in the clinician comprehension and thus their mental models of the cases. Conclusion: The factors that may explain the variance within and between the clinician models are clinician type, and only in the nursing group, the use of highlighting.
Resumo:
Clinical text understanding (CTU) is of interest to health informatics because critical clinical information frequently represented as unconstrained text in electronic health records are extensively used by human experts to guide clinical practice, decision making, and to document delivery of care, but are largely unusable by information systems for queries and computations. Recent initiatives advocating for translational research call for generation of technologies that can integrate structured clinical data with unstructured data, provide a unified interface to all data, and contextualize clinical information for reuse in multidisciplinary and collaborative environment envisioned by CTSA program. This implies that technologies for the processing and interpretation of clinical text should be evaluated not only in terms of their validity and reliability in their intended environment, but also in light of their interoperability, and ability to support information integration and contextualization in a distributed and dynamic environment. This vision adds a new layer of information representation requirements that needs to be accounted for when conceptualizing implementation or acquisition of clinical text processing tools and technologies for multidisciplinary research. On the other hand, electronic health records frequently contain unconstrained clinical text with high variability in use of terms and documentation practices, and without commitmentto grammatical or syntactic structure of the language (e.g. Triage notes, physician and nurse notes, chief complaints, etc). This hinders performance of natural language processing technologies which typically rely heavily on the syntax of language and grammatical structure of the text. This document introduces our method to transform unconstrained clinical text found in electronic health information systems to a formal (computationally understandable) representation that is suitable for querying, integration, contextualization and reuse, and is resilient to the grammatical and syntactic irregularities of the clinical text. We present our design rationale, method, and results of evaluation in processing chief complaints and triage notes from 8 different emergency departments in Houston Texas. At the end, we will discuss significance of our contribution in enabling use of clinical text in a practical bio-surveillance setting.
Resumo:
On-orbit exposures can come from numerous factors related to the space environment as evidenced by almost 50 years of environmental samples collected for water analysis, air analysis, radiation analysis, and physiologic parameters. For astronauts and spaceflight participants the occupational exposures can be very different from those experienced by workers performing similar tasks in workplaces on Earth, because the duration of the exposure could be continuous for very long orbital, and eventually interplanetary, missions. The establishment of long-term exposure standards is vital to controlling the quality of the spacecraft environment over long periods. NASA often needs to update and revise its prior exposure standards (Spacecrafts Maximum Allowable Concentrations (SMACs)). Traditional standards-setting processes are often lengthy, so a more rapid method to review and establish standards would be a substantial advancement in this area. This project investigates use of the Delphi method for this purpose. ^ In order to achieve the objectives of this study a modified Delphi methodology was tested in three trials executed by doctoral students and a panel of experts in disciplines related to occupational safety and health. During each test/trial modifications were made to the methodology. Prior to submission of the Delphi Questionnaire to the panel of experts a pilot study/trial was conducted using five doctoral students with the goals of testing and adjusting the Delphi questionnaire to improve comprehension, work out any procedural issues and evaluate the effectiveness of the questionnaire in drawing the desired responses. The remainder of the study consisted of two trials of the Modified Delphi process using 6 chemicals that currently have the potential of causing occupational exposures to NASA astronauts or spaceflight participants. To assist in setting Occupational Exposure Limits (OEL), the expert panel was established consisting of experts from academia, government and industry. Evidence was collected and used to create close-ended questionnaires which were submitted to the Delphi panel of experts for the establishment of OEL values for three chemicals from the list of six originally selected (trial 1). Once the first Delphi trial was completed, adjustments were made to the Delphi questionnaires and the process above was repeated with the remaining 3 chemicals (trial 2). ^ Results indicate that experience in occupational safety and health and with OEL methodologies can have a positive effect in minimizing the time experts take in completing this process. Based on the results of the questionnaires and comparison of the results with the SMAC already established by NASA, we conclude that use of the Delphi methodology is appropriate for use in the decision-making process for the selection of OELs.^