5 resultados para Sustainable Urban and Transportation Development

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of a model to guide the understanding and resolution of community problems is an important issue relating to the foundation of public health practice: assessment, policy development, and assurance. Many assessment models produce a diagnosis of community weaknesses, but fail to promote planning and interventions. Rapid Participatory Appraisal (RPA) is a participatory action research model which regards assessment as the first step in the problem solving process, and claims to achieve assessment and policy development within limited resources of time and money. Literature documenting the fulfillment of these claims, and thereby supporting the utility of the model, is relatively sparse and difficult to obtain. Very few articles discuss the changes resulting from RPA assessments in urban areas, and those that do describe studies conducted outside the U.S.A. ^ This study examines the utility of the RPA model and its underlying theories: systems theory, grounded theory, and principles of participatory change, as illustrated by the case study of a community assessment conducted for the Texas Diabetes Institute (TDI), San Antonio, Texas, and subsequent outcomes. Diabetes has a high prevalence and is a major issue in San Antonio. Faculty and students conducted the assessment by informal collaboration between two nursing and public health assessment courses, providing practical student experiences. The study area was large, and the flexibility of the model tested by its use in contiguous sub-regions, reanalyzing aggregated results for the study area. Official TDI reports, and a mail survey of agency employees, described policy development resulting from community diagnoses revealed by the assessment. ^ The RPA model met the criteria for utility from the perspectives of merit, worth, efficiency, and effectiveness. The RPA model best met the agencies' criteria (merit), met the data needs of TDI in this particular situation (worth), provided valid results within budget, time, and personnel constraints (efficiency), and stimulated policy development by TDI (effectiveness). ^ The RPA model appears to have utility for community assessment, diagnosis, and policy development in circumstances similar to the TDI diabetes study. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skin is composed of two major compartments, the dermis and epidermis. The epidermis forms a barrier to protect the body. The stratified epithelium has self-renewing capacity throughout life, and continuous turnover is mediated by stem cells in the basal layer. p63 is structurally and functionally related to p53. In spite of their structural similarities, p63 is critical for the development and maintenance of stratified epithelial tissues, unlike p53. p63 is highly expressed in the epidermis and previously has been shown to play a critical role in the development and maintenance of the epidermis. The study of p63 has been complicated due to the existence of multiple isoforms: those with a transactivation domain (TAp63) and those lacking this domain (ΔNp63). Mice lacking p63 cannot form skin, have craniofacial and skeletal defects and die within hours after birth. These defects are due to the ability of p63 to regulate multiple processes in skin development including epithelial stem cell proliferation, differentiation, and adherence programs. To determine the roles of these isoforms in skin development and maintenance, isoform specific p63 conditional knock out mice were generated by our lab. TAp63-/- mice age prematurely, develop blisters, and display wound-healing defects that result from hyperproliferation of dermal stem cells. That results in premature depletion of these cells, which are necessary for wound repair, that indicates TAp63 plays a role in dermal/epidermal maintenance. To study the role of ΔNp63, I generated a ΔNp63-/- mouse and analyzed the skin by performing immunofluorescence for markers of epithelial differentiation. The ΔNp63-/- mice developed a thin, disorganized epithelium but differentiation markers were expressed. Interestingly, the epidermis from ΔNp63-/- mice co-expressed K14 and K10 in the same cell suggesting defects in epidermal differentiation and stratification. This phenotype is reminiscent of the DGCR8fl/fl;K14Cre and Dicerfl/fl;K14Cre mice skin. Importantly, DGCR8-/- embryonic stem cells (ESCs) display a hyperproliferation defect by failure to silence pluripotency genes. Furthermore, I have observed that epidermal cells lacking ΔNp63 display a phenotype reminiscent of embryonic stem cells instead of keratinocytes. Thus, I hypothesize that genes involved in maintaining pluripotency, like Oct4, may be upregulated in the absence of ΔNp63. To test this, q-RT PCR was performed for Oct4 mRNA with wild type and ΔNp63-/- 18.5dpc embryo skin. I found that the level of Oct4 was dramatically increased in the absence of ΔNp63-/-. Based on these results, I hypothesized that ΔNp63 induces differentiation by silencing pluripotency regulators, Oct4, Sox2 and Nanog directly through the regulation of DGCR8. I found that DGCR8 restoration resulted in repression of Oct4, Sox2 and Nanog in ΔNp63-/- epidermal cells and rescue differentiation defects. Loss of ΔNp63 resulted in pluripotency that caused defect in proper differentiation and stem cell like phenotype. This led me to culture the ΔNp63-/- epidermal cells in neuronal cell culture media in order to address whether restoration of DGCR8 can transform epidermal cells to neuronal cells. I found that DGCR8 restoration resulted in a change in cell fate. I also found that miR470 and miR145 play a role in the induction of pluripotency by repressing Oct4, Sox2 and Nanog. This indicates that ΔNp63 induces terminal differentiation through the regulation of DGCR8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Delta cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the alpha/beta importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Given that an alarming 1 in 5 children in the USA are at risk of hunger (1 in 3 among black and Latino children), and that 3.9 million households with children are food insecure, it is crucial to understand how household food insecurity (HFI) affects the present and future well-being of our children. Purpose: The objectives of this review article are to: (i) examine the association between HFI and child intellectual, behavioral and psycho-emotional development, controlling for socio-economic indicators; (ii) review the hypothesis that HFI is indeed a mediator of the relationship between poverty and poor child development outcomes; (iii) examine if the potential impact of HFI on caregivers’ mental health well-being mediates the relationship between HFI and child development outcomes. Methods: Pubmed search using the key words “food insecurity children.” For articles to be included they had to: (i) be based on studies measuring HFI using an experience-based scale, (ii) be peer reviewed, and (iii) include child intellectual, behavioral and/or socio-emotional development outcomes. Studies were also selected based on backward and forward Pubmed searches, and from the authors’ files. After reviewing the abstracts based on inclusion criteria a total of 26 studies were selected. Results: HFI represents not only a biological but also a psycho-emotional and developmental challenge to children exposed to it. Children exposed to HFI are more likely to internalize or externalize problems, as compared to children not exposed to HFI. This in turn is likely to translate into poor academic/cognitive performance and intellectual achievement later on in life. A pathway through which HFI may affect child development is possibly mediated by caregivers’ mental health status, especially parental stress and depression. Thus, HFI is likely to foster dysfunctional family environments. Conclusion: Findings indicate that food insecure households may require continued food assistance and psycho-emotional support until they transition to a “stable” food secure situation. This approach will require a much better integration of social policies and access to programs offering food assistance and mental health services to those in need. Findings also fully justify increased access of vulnerable children to programs that promote early in life improved nutrition as well as early psycho-social and cognitive stimulation opportunities.