4 resultados para Surrogate Data

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The joint modeling of longitudinal and survival data is a new approach to many applications such as HIV, cancer vaccine trials and quality of life studies. There are recent developments of the methodologies with respect to each of the components of the joint model as well as statistical processes that link them together. Among these, second order polynomial random effect models and linear mixed effects models are the most commonly used for the longitudinal trajectory function. In this study, we first relax the parametric constraints for polynomial random effect models by using Dirichlet process priors, then three longitudinal markers rather than only one marker are considered in one joint model. Second, we use a linear mixed effect model for the longitudinal process in a joint model analyzing the three markers. In this research these methods were applied to the Primary Biliary Cirrhosis sequential data, which were collected from a clinical trial of primary biliary cirrhosis (PBC) of the liver. This trial was conducted between 1974 and 1984 at the Mayo Clinic. The effects of three longitudinal markers (1) Total Serum Bilirubin, (2) Serum Albumin and (3) Serum Glutamic-Oxaloacetic transaminase (SGOT) on patients' survival were investigated. Proportion of treatment effect will also be studied using the proposed joint modeling approaches. ^ Based on the results, we conclude that the proposed modeling approaches yield better fit to the data and give less biased parameter estimates for these trajectory functions than previous methods. Model fit is also improved after considering three longitudinal markers instead of one marker only. The results from analysis of proportion of treatment effects from these joint models indicate same conclusion as that from the final model of Fleming and Harrington (1991), which is Bilirubin and Albumin together has stronger impact in predicting patients' survival and as a surrogate endpoints for treatment. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose. Brain lesions in acute ischemic stroke measured by imaging tools provide important clinical information for diagnosis and final infarct volume has been considered as a potential surrogate marker for clinical outcomes. Strong correlations have been found between lesion volume and clinical outcomes in the NINDS t-PA Stroke Trial but little has been published about lesion location and clinical outcomes. Studies of the National Institute of Neurological Disorders and Stroke (NINDS) t-PA Stroke Trial data found the direction of the t-PA treatment effect on a decrease in CT lesion volume was consistent with the observed clinical effects at 3 months, but measure of t-PA treatment benefits using CT lesion volumes showed a diminished statistical significance, as compared to using clinical scales. ^ Methods. We used the global test to evaluate the hypothesis that lesion locations were strongly associated with clinical outcomes within each treatment group at 3 months after stroke. The anatomic locations of CT scans were used for analysis. We also assessed the effect of t-PA on lesion location using a global statistical test. ^ Results. In the t-PA group, patients with frontal lesions had larger infarct volumes and worse NIHSS score at 3 months after stroke. The clinical status of patients with frontal lesions in t-PA group was less likely to be affected by lesion volume, as compared to those who had no frontal lesions in at 3 months. For patients within the placebo group, both brain stem and internal capsule locations were significantly associated with a lower odd of having favorable outcomes at 3 months. Using a global test we could not detect a significant effect of t-PA treatment on lesion location although differences between two treatment groups in the proportion of lesion findings in each location were found. ^ Conclusions. Frontal, brain stem, and internal capsule locations were significantly related to clinical status at 3 months after stroke onset. We detect no significant t-PA effect on all 9 locations although proportion of lesion findings in differed among locations between the two treatment groups.^