5 resultados para Surgical instruments and apparatus
em DigitalCommons@The Texas Medical Center
Resumo:
Section "A": Dissecting and Post-Mortem Instruments Diagnostic Instruments and Apparatus Microscopes and Microscopic Accessories Laboratory Apparatus and Glass Ware Apparatus for Blood and Urine Analysis Apparatus for Phlebotomy, Cupping and Leeching Apparatus for Infusion and Transfusion Syringes for Aspiration and Injection Osteological Preparations Section "B": Anaesthetic, General Operating, Osteotomy, Trepanning, Bullet, Pocket Case, Cautery, Ligatures, Sutures, Dressings, Etc. Section "B" continued Section "C": Eye, Ear, Nasal, Dermal, Oral, Tonsil, Tracheal, Laryngeal,Esophageal, Stomach, Intestinal, Gall Bladder Section "C": continued Section "D": Rectal, Phimosis, Prostatic, Vesical, Urethral, Ureteral, Instruments Section "E": Gynecic, Hysterectomy, Obstetrical, Instrument Satchels, Medicine Cases Section "F": Electric Cautery Transformers, Electro-Cautery Burners and Accessories, Electric Current Controllers, Electro-Diagnostic Outfits, Electrolysis Instruments Electro-Therapeutic Lamps, Faradic Batteries, Galvanic Batteries Section "G": Office Furniture, Office Sterilizing Apparatus, Hospital Supplies, Surgical Rubber Goods, Sick Room Utensils, Invalid Rolling Chairs, Invalid Supplies Section "H": Artificial Limbs, Deformity Apparatus, Fracture Apparatus, Splints, Splint Material, Elastic Hosiery, Abdominal Supporters, Crutches, Trusses, Suspensories, Etc. Index
Resumo:
Second Edition. Pp.5-61 General Surgical Necessities, Gauze, Antiseptic Sundries, Surgical Sundries, Rubber Bandages, Catheters, Bougies, Splints, Tents, Emergency Bags, Surgeon's Needles, Operating Instruments, Amputating, Forceps, Aspiration, Cases, Catheters and Directors, Pocket Case Instruments, Dissecting and Post-Mortem Pp.62-118 General Operating - Osteotomy, Mastoid, Trephining, Eye Instruments, Aural, Nasal, Mouth and Throat, Tooth Forceps, Laryngoscopic Sets, Hydraulic Air Compressor, Variocele, Genito Urinary Pp. 119-167 Genito Urinary-Lithotrity, Alimentary, Anal and Rectal, Gynaecological, Pessaries, Microscopes, Syringes Pp.168-205 Chemical Apparatus and Glassware, Physician's Cabinets, Office Furniture, Operating Chairs and Tables, Hospital Beds, Cautery, Electrolytic, Batteries Pp.206-246 Cases, Varicose, Braces, Abdominal Supporters, Trusses, Invalid Chairs and Supplies, Sterilizers, Saddle-Bags, Deformity Apparatus Advertisements: Bandages, Abdominal Supporters, Rubber Supplies, Bags, Batteries, Cotton, Microscopes, Hypodermic Tablets, Atomizers, Furniture, Sterilizers, Syringes
Resumo:
Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.
Resumo:
Unlike infections occurring during periods of chemotherapy-induced neutropenia, postoperative infections in patients with solid malignancy remain largely understudied. The purpose of this population-based study was to evaluate the clinical and economic burden, as well as the relationship of hospital surgical volume and outcomes associated with serious postoperative infection (SPI) – i.e., bacteremia/sepsis, pneumonia, and wound infection – following resection of common solid tumors.^ From the Texas Discharge Data Research File, we identified all Texas residents who underwent resection of cancer of the lung, esophagus, stomach, pancreas, colon, or rectum between 2002 and 2006. From their billing records, we identified ICD-9 codes indicating SPI and also subsequent SPI-related readmissions occurring within 30 days of surgery. Random-effects logistic regression was used to calculate the impact of SPI on mortality, as well as the association between surgical volume and SPI, adjusting for case-mix, hospital characteristics, and clustering of multiple surgical admissions within the same patient and patients within the same hospital. Excess bed days and costs were calculated by subtracting values for patients without infections from those with infections computed using multilevel mixed-effects generalized linear model by fitting a gamma distribution to the data using log link.^ Serious postoperative infection occurred following 9.4% of the 37,582 eligible tumor resections and was independently associated with an 11-fold increase in the odds of in-hospital mortality (95% Confidence Interval [95% CI], 6.7-18.5, P < 0.001). Patients with SPI required 6.3 additional hospital days (95% CI, 6.1 - 6.5) at an incremental cost of $16,396 (95% CI, $15,927–$16,875). There was a significant trend toward lower overall rates of SPI with higher surgical volume (P=0.037). ^ Due to the substantial morbidity, mortality, and excess costs associated with SPI following solid tumor resections and given that, under current reimbursement practices, most of this heavy burden is borne by acute care providers, it is imperative for hospitals to identify more effective prophylactic measures, so that these potentially preventable infections and their associated expenditures can be averted. Additional volume-outcomes research is also needed to identify infection prevention processes that can be transferred from higher- to lower-volume providers.^
Resumo:
As an interface between the circulatory and central nervous systems, the neurovascular unit is vital to the development and survival of tumors. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are major impediments to surgical resection and targeted therapies. Adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we have utilized human GBM cell lines, primary patient samples, and pre-clinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin associates with Rho GDP Dissociation Inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin-RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, suppresses activation of Rho proteins to promote GBM cell invasiveness. Hence, targeting the αvβ8 integrin-RhoGDI1 signaling axis may be an effective strategy for blocking GBM cell invasion.