2 resultados para Sugawara, Michizane, 845-903.
em DigitalCommons@The Texas Medical Center
Resumo:
As schools are pressured to perform on academics and standardized examinations, schools are reluctant to dedicate increased time to physical activity. After-school exercise and health programs may provide an opportunity to engage in more physical activity without taking time away from coursework during the day. The current study is a secondary data analysis of data from a randomized trial of a 10-week after-school program (six schools, n = 903) that implemented an exercise component based on the CATCH physical activity component and health modules based on the culturally-tailored Bienestar health education program. Outcome variables included BMI and aerobic capacity, health knowledge and healthy food intentions as assessed through path analysis techniques. Both the baseline model (χ2 (df = 8) = 16.90, p = .031; RMSEA = .035 (90% CI of .010–.058), NNFI = 0.983 and the CFI = 0.995) and the model incorporating intervention participation proved to be a good fit to the data (χ2 (df = 10) = 11.59, p = .314. RMSEA = .013 (90% CI of .010–.039); NNFI = 0.996 and CFI = 0.999). Experimental group participation was not predictive of changes in health knowledge, intentions to eat healthy foods or changes in Body Mass Index, but it was associated with increased aerobic capacity, β = .067, p < .05. School characteristics including SES and Language proficiency proved to be significantly associated with changes in knowledge and physical indicators. Further effects of school level variables on intervention outcomes are recommended so that tailored interventions can be developed aimed at the specific characteristics of each participating school. ^
Resumo:
Schizophrenia (SZ) is a complex disorder with high heritability and variable phenotypes that has limited success in finding causal genes associated with the disease development. Pathway-based analysis is an effective approach in investigating the molecular mechanism of susceptible genes associated with complex diseases. The etiology of complex diseases could be a network of genetic factors and within the genes, interaction may occur. In this work we argue that some genes might be of small effect that by itself are neither sufficient nor necessary to cause the disease however, their effect may induce slight changes to the gene expression or affect the protein function, therefore, analyzing the gene-gene interaction mechanism within the disease pathway would play crucial role in dissecting the genetic architecture of complex diseases, making the pathway-based analysis a complementary approach to GWAS technique. ^ In this study, we implemented three novel linkage disequilibrium based statistics, the linear combination, the quadratic, and the decorrelation test statistics, to investigate the interaction between linked and unlinked genes in two independent case-control GWAS datasets for SZ including participants of European (EA) and African (AA) ancestries. The EA population included 1,173 cases and 1,378 controls with 729,454 genotyped SNPs, while the AA population included 219 cases and 288 controls with 845,814 genotyped SNPs. We identified 17,186 interacting gene-sets at significant level in EA dataset, and 12,691 gene-sets in AA dataset using the gene-gene interaction method. We also identified 18,846 genes in EA dataset and 19,431 genes in AA dataset that were in the disease pathways. However, few genes were reported of significant association to SZ. ^ Our research determined the pathways characteristics for schizophrenia through the gene-gene interaction and gene-pathway based approaches. Our findings suggest insightful inferences of our methods in studying the molecular mechanisms of common complex diseases.^