3 resultados para Stoyko, Steve
em DigitalCommons@The Texas Medical Center
Resumo:
A complex of interrelated factors including minority status, poverty, education, health status, and other factors determine the general welfare of children in America, particularly in heavily diverse states such as Texas. Although racial/ethnic status is clearly only a concomitant factor in that determination it is a factor for which future projections are available and for which the relationships with the other factors in the complex can be assessed. After examining the nature of the interrelationships between these factors we utilize direct standardization techniques to examine how the future diversification of the United States and Texas will affect the number of children in poverty, the educational status of the householders in households in which children in poverty live and the health status of children in 2040 assuming that the current relationships between minority status and these socioeconomic factors continue into the future. In the results of the analyses, data are compared with the total population of the United States and Texas in 2040 assumed in the first simulation scenario, to have the race/ethnicity characteristics of 2008 and in the second those projected for 2040 by the U.S. Census Bureau for the nation and by the Texas State Data Center for Texas in 2040. The results show that the diversification of the population could increase the number of children in poverty in the United States by nearly 1.8 million more than would occur with the lower levels of diversification evident in 2008. In addition, poverty would become increasingly concentrated among minority children with minority children accounting for 76.2 percent of all children in poverty by 2040 and with Hispanic children accounting for nearly half of the children in poverty by 2040. Results for educational attainment show an increasing concentration of minority children in households with householders with very low levels of education such that by 2040, 85.2 percent of the increase in the number of children in poverty would be in households with a householder with less than a high school level of education. Finally, the results related to several health status factors show that children in poverty will have a higher prevalence of nearly all health conditions. For example, the number of children with untreated dental conditions could increase to more than 4 million in the United States and to nearly 500,000 in Texas. The results clearly show that improving the welfare of children in America will require concerted efforts to change the poverty, educational, and health status characteristics associated with minority status and particularly Hispanic status. Failing to do so will lead to a future in which America’s children are increasingly impoverished, more poorly educated, and less healthy and which, as a result, is an America with a more tentative future.
Resumo:
Various Moloney murine sarcoma virus (Mo-MuSV) isolates contain a cellular sequence, termed mos, which is responsible for the transforming ability of Mo-MuSV. A serine kinase activity has been found to be associated with mos gene products of several isolates of Mo-MuSV. A mutant of Mo-MuSV strain 124 (designated MuSV ts110) is temperature-sensitive (ts) for transformation and encodes two proteins, P85('gag-mos) (an 85,000 M(,r) protein encoded by the gag and mos genes) and P58('gag), at the permissive temperature (28(DEGREES)C). At the nonpermissive temperature (39(DEGREES)C), only P58('gag) is found in MuSV ts110-infected NRK cells (6m2 cells). Both P85('gag-mos) and P58('gag) were phosphorylated when anti-gag immune complexes containing these proteins were incubated at 22(DEGREES)C with (lamda)-('32)P -ATP and MnCl(,2). The kinase detected in anti-gag complexes from 6m2 cells at permissive temperature was associated with P85('gag-mos) since immune complexes from 39(DEGREES)C 6m2 cells, which lack P85('gag-mos), produced no phosphorylated P58('gag) molecules. In addition, an anti-mos complex (anti-mos 37-55 complexes) allowed in vitro phosphorylation of P85('gag-mos) in the absence of P58('gag). No kinase activity was detectable with other gag gene products (e.g., Mo-MuSV-124 P62('gag)), suggesting that the P85('gag-mos) kinase activity was present within the mos portion of the protein. The P85('gag-mos) kinase activity was very thermolabile upon shifting 6m2 cells from permissive to nonpermissive temperatures (t(, 1/2) for inactivation = 5 min). In contrast, a spontaneous revertant of MuSV ts110 encodes a larger gag-mos protein (termed P100('gag-mos)) which contained a kinase activity stable to 39(DEGREES)C. Using the optimal conditions developed for the P85('gag-mos) kinase, Mo-MuSV-encoded p37('mos) was also found to be associated with a serine kinase activity. Phosphorylation of p37('mos) and a 43 Kd protein (super-phosphorylated p37('mos)) occurred in anti-mos(37-55) complexes from Mo-MuSV-124 acutely-infected NIH 3T3 cells, but neither in mos 37-55 peptide-blocked anti-mos(37-55) complexes nor in immune complexes from uninfected NIH 3T3 cells. Antibodies directed against the C-terminus of v-mos were found to inhibit the in vitro phosphorylation of p37('mos), suggesting that the extreme C-terminal sequence of v-mos may be important for an intrinsic kinase activity. This inhibitory action by antibodies to the C-terminus of p37('mos), when considered with all the other data reported here, provides convincing evidence that the v-mos gene encodes a serine protein kinase activity. ^
Resumo:
As an interface between the circulatory and central nervous systems, the neurovascular unit is vital to the development and survival of tumors. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are major impediments to surgical resection and targeted therapies. Adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we have utilized human GBM cell lines, primary patient samples, and pre-clinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin associates with Rho GDP Dissociation Inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin-RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, suppresses activation of Rho proteins to promote GBM cell invasiveness. Hence, targeting the αvβ8 integrin-RhoGDI1 signaling axis may be an effective strategy for blocking GBM cell invasion.