17 resultados para Stop the nonsense
em DigitalCommons@The Texas Medical Center
Resumo:
Inappropriate response tendencies may be stopped via a specific fronto/basal ganglia/primary motor cortical network. We sought to characterize the functional role of two regions in this putative stopping network, the right inferior frontal gyrus (IFG) and the primary motor cortex (M1), using electocorticography from subdural electrodes in four patients while they performed a stop-signal task. On each trial, a motor response was initiated, and on a minority of trials a stop signal instructed the patient to try to stop the response. For each patient, there was a greater right IFG response in the beta frequency band ( approximately 16 Hz) for successful versus unsuccessful stop trials. This finding adds to evidence for a functional network for stopping because changes in beta frequency activity have also been observed in the basal ganglia in association with behavioral stopping. In addition, the right IFG response occurred 100-250 ms after the stop signal, a time range consistent with a putative inhibitory control process rather than with stop-signal processing or feedback regarding success. A downstream target of inhibitory control is M1. In each patient, there was alpha/beta band desynchronization in M1 for stop trials. However, the degree of desynchronization in M1 was less for successfully than unsuccessfully stopped trials. This reduced desynchronization on successful stop trials could relate to increased GABA inhibition in M1. Together with other findings, the results suggest that behavioral stopping is implemented via synchronized activity in the beta frequency band in a right IFG/basal ganglia network, with downstream effects on M1.
Resumo:
Background. Lack of coverage, lack of access, and failure to utilize health care services have all been linked to dismal health outcomes in the US. Such consequences have been a longstanding challenge that US minorities are faced with, in the context of a health care system believed to be lacking efficiency and equity. National population surveys in the US suggest that the number of uninsured approaches 50 millions, while some concerns and suspicions are raised by opponents to the growing number of foreign born US residents, many of whom are Hispanic. Research shows that race is a significant predictor of lack of coverage, access, and utilization, while age, gender, education, and income are also linked to these outcomes. We investigated the potential effect of immigration status or duration in the US on the association between coverage, access, use, and race. Methods. Using National Health Interview Survey (NHIS) data of 2006, we selected 22, 667 individuals of Non-Hispanic Black, Hispanic, and Non-Hispanic White descent, at least 18 years of age, US-born and foreign-born who reported their duration of residence in the US. Through complex sample survey logistic regression analysis, we computed odds ratios, beta coefficients, and 95% confidence intervals using models which excluded then included immigration status. Results. Although a significant predictor of the outcomes, immigration status did not change the relationship between each of the dependent variables (coverage, access, utilization), and the factor race, while adjusting for age, gender, education, and income. Our results show that Hispanics were least likely to have coverage (OR=.58; 95% CI[.49, .68]), access (OR=.62; 95% CI[.50, .76]), and to utilize services (OR=.60; 95% CI[.46, .79]) followed by Non-Hispanic Blacks, and Non-Hispanic Whites. These results were not changed by stratification, or the inclusion of interaction terms to eliminate the potential effect of relationships between independent variables. Recent immigrants (<5 years in US) were 0.12 times less likely to be insured, but also 0.26 times less likely to utilize services (p<0.001), and in addition they represented only 7.3% of the uninsured and 1.9% of the US population in 2006. Furthermore, 12% of the Non-Hispanic White population in the US was not covered, and 65% of the uninsured individuals were US-Born Citizens. Other predictors of lack of coverage, access and use were age below 45, male gender, education at high school or below, and income of less than $20,000. Conclusion. This investigation shows that the high percentage of uninsured was not directly caused by Hispanics, and immigration status alone could not explain racial differences in coverage, access, and utilization. An immigration reform may not be the solution to the healthcare crisis, and more specifically, will not stop the increase in the number of uninsured in the US, nor reduce the cost of health care. As a better alternative, universal health insu rance coverage should be considered, when aiming to eliminate racial disparities, and to solve the health care crisis. ^ Keywords. health insurance, coverage, access, utilization, race, immigration, disparities.^
Resumo:
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). Two out of three T-cell receptor β (TCRβ) transcripts carry PTCs as a result of error-prone programmed rearrangements that occur at this locus during lymphocyte maturation. PTCs decrease TCRβ mRNA levels to a much greater extent than mRNAs transcribed from non-rearranging genes. This robust decrease in TCRβ mRNA levels is not a unique characteristic of the T-cell environment or the TCRβ promoter. The simplest explanation for this is that PTC-bearing TCRβ mRNAs elicit a stronger NMD response. An alternative explanation is NMD collaborates with another mechanism to dramatically decrease PTC-bearing TCRβ mRNA levels. ^ In my dissertation, I investigated the molecular mechanism behind the strong decrease in TCRβ mRNA levels triggered by PTCs. To determine the location of this response, I performed mRNA half-life analysis and found that PTCs elicited more rapid TCRβ mRNA decay in the nuclear fraction, not the cytoplasmic fraction. Although decay was restricted to the nuclear fraction, PTC-bearing TCRβ transcript levels were extremely low in the cytoplasm, a phenomenon that I named the nonsense-codon induced partitioning shift (NIPS). I established that NIPS shares several qualities with NMD, including its dependence on translation and NMD factors. Several lines of evidence suggested that NIPS results from PTCs eliciting retention of TCRβ transcripts in the nuclear fraction. This retention, as well as rapid TCRβ mRNA decay, most likely occurs in either the nucleoplasm or the outer nuclear membrane, based on analysis of nuclear and cytoplasmic markers in the highly purified nuclei I used for my studies. To further address the location of decay, I asked whether nuclear or cytoplasmic RNA decay factors mediated the destruction of PTC-bearing mRNAs. My results suggested that a nuclear component of the 3'-to-5' exosome, as well as an endonucleolytic activity, are involved in the destruction of PTC-containing TCRβ mRNAs. Individual endogenous NMD substrates had differential requirements for nuclear and cytoplasmic exonucleases. In summary, my results provide evidence that PTCs trigger multiple mechanisms involving multiple decay factors to remove and regulate mRNAs in mammalian cells. ^
Resumo:
Since heroin was introduced to East Africa during the 1980s, heroin use practices have changed rapidly in response to various internal and external pressures. The aim of this study was to identify and describe the population of heroin users and locations of heroin use in Dar es Salaam, Tanzania, in order to understand recent contexts of heroin use. The study took place between June 30 and August 19, 2011, in all three districts (Kinondoni, Ilala, and Temeke) of Dar es Salaam. We mapped sites using a Global Positioning System device, counted numbers of heroin users, and conducted informal interviews with heroin users. The mixed-methods analyses of the data included quantifying the basic demographic and aggregate information about the sites and heroin users, as well as qualitative analysis and coding of fieldnotes from observations and responses to interviews which was used to identify themes and characteristics of heroin users. ^ We identified a total of 150 sites and counted a total of 1046 male and 46 female non-injecting drug users and 78 male and 9 female injecting drug users (IDUs) of heroin. We found that social organization existed at some of the sites, with 31% (n=47) of sites reporting having a leader and 44% (n=66) of sites reporting mutual aid between users frequenting the site. We had difficulty locating IDUs and female drug users, and the majority of users we encountered were heroin smokers of kokteli, a mixture of heroin, cannabis, and/or tobacco which is smoked like a cigarette. ^ This research highlighted heroin smokers’ desire for access to drug treatment services. The current methadone-based medication assisted treatment (MAT) program is funded and operates as an HIV prevention program for IDUs to reduce HIV infection in this population and slow or stop the spread of a second wave of HIV infection in the general population. However, smokers perceived MAT to be primarily a drug use prevention or cessation program and felt unjustly neglected from the intervention, leading to a tense relationship with IDUs. From a public health standpoint, future interventions should include heroin smokers to prevent HIV transmission. ^
Resumo:
In the rabbit retina, there are two kinds of horizontal cells (HCs). The A-type HC is a large axonless cell which contacts cones exclusively. The B-type HC is an axon bearing cell. While the somatic dendrites of B-type HCs also contact cones, the axon expands into an elaborately branched structure, the axon terminal (AT), which contacts a large number of rods. It is difficult to label the different HCs selectively by immunochemical methods. Therefore, we developed dye injection methods to label each type of HC. Then it was possible, (1) to describe the detailed structure of the AT (2) to identify the glutamate receptors mediating cone input to A and B-type HCs and rod input to ATs and (3) to test the hypothesis that the B-type HCs are coupled via Cx57 gap junctions. ^ To obtain well filled examples of single HCs, it was necessary to block gap junction coupling to stop the spread of Neurobiotin through the network. We used dye coupling in A-type HCs to screen a series of potential gap junction antagonists. One of these compounds, meclofenamic acid (MFA), was potent, water soluble and easily reversible. This compound may be a useful tool to manipulate gap junction coupling. ^ In the presence of MFA, Neurobiotin passed down the axon of B-type HCs to reveal the detailed structure of the AT. We observed that only one AT ending entered each rod spherule invagination. This observation was confirmed by calculation and two dye injections. ^ Glutamate is the neurotransmitter used by both rods and cones. AMPA receptors were colocalized with the dendrites of A and B-type HCs at each cone pedicle. In addition, AMPA receptors were located on the AT ending at each rod spherule. Thus rod and cone input to HCs is mediated by AMPA receptors. ^ A-type and B-type HCs may express different connexins because they have different dye-coupling properties. Recently, we found that connexin50 (Cx50) is expressed by A-type HCs. B-type HCs and B-type ATs are also independently coupled. Cx57 was expressed in the OPL and double label studies showed that Cx 57 was colocalized with the AT matrix but not with the somatic dendrites of B-type HCs. ^ In summary, we have identified a useful gap junction antagonist, MFA. There is one AT ending at each rod spherule, rods inputs to ATs is mediated by AMPA receptors and coupling in the AT matrix is mediated by Cx57. This confirms that HCs with different properties use distinct connexins. The properties of ATs described in this research are consistent. The connections and properties reported here suggest that ATs functions as rod HCs and provide a negative feedback signal to rods. ^
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.
Resumo:
Nonsense-mediated decay (NMD) degrades aberrant transcripts containing premature termination codons (PTCs). The T-cell receptor (TCR) locus undergoes error-prone rearrangements that frequently acquire PTCs. Transcripts harboring PTCs from this locus are downregulated much more than transcripts from non-rearranging genes. Efficient splicing is essential for this robust downregulation. ^ Here I show that TCR NMD is unique in another respect: it is not impaired by RNAi-mediated depletion of the NMD factor UPF3b. This differentiates TCR transcripts from classical NMD (assayed using β-globin or triose phosphate isomerase transcripts), which does depend on UPF3b. Depletion of UPF3a, which encodes a gene related to UPF3b, also had no effect on TCR NMD. Mapping experiments identified TCR sequences that when deleted or mutated caused a switch to UPF3b dependence. Since UPF3b dependence was invariably accompanied by less efficient RNA splicing, this suggests that UPF3b-dependent NMD occurs when transcripts are generated by inefficient splicing. Microarray analysis revealed the existence of many NMD-targeted mRNAs from wild-type genes whose downregulation is impervious to UPF3b depletion. This suggests the existence of an alternative NMD pathway independent of UPF3b that is widely used to downregulate the level of both normal and mutant transcripts. ^ During the course of my studies, I also found that the function of UPF3a is fundamentally distinct from that of UPF3b in several aspects. First, classical NMD failed to be impaired by UPF3a depletion, whereas it was reversed by UPF3b depletion. Second, UPF3a depletion had no effect on NMD elicited by tethered UPF2, whereas UPF3b depletion blocked this response. Thus, UPF3a does not function in classical NMD. Third, UPF3b depletion upregulated the expression of UPF3a, whereas UPF3a depletion had no effect on UPF3b expression. This suggests that a UPF3b-mediated feedback network exists that regulates the UPF3a expression. Lastly, UPF3a depletion but not UPF3b depletion significantly upregulated TCR precursor RNAs. This suggests that UPF3a, not UPF3b, functions in the surveillance of precursor RNAs, which typically contain many PTCs in the introns. Collectively, my data suggests that UPF3a and UPF3b are not functionally redundant, as previously thought, but instead have separable functions. ^
Resumo:
BACKGROUND: Physician advice is an important motivator for attempting to stop smoking. However, physicians' lack of intervention with smokers has only modestly improved in the last decade. Although the literature includes extensive research in the area of the smoking intervention practices of clinicians, few studies have focused on Hispanic physicians. The purpose of this study was to explore the correlates of tobacco cessation counseling practices among Hispanic physicians in the US. METHODS: Data were collected through a validated survey instrument among a cross-sectional sample of self-reported Hispanic physicians practicing in New Mexico, and who were members of the New Mexico Hispanic Medical Society in the year 2001. Domains of interest included counseling practices, self-efficacy, attitudes/responsibility, and knowledge/skills. Returned surveys were analyzed to obtain frequencies and descriptive statistics for each survey item. Other analyses included: bivariate Pearson's correlation, factorial ANOVAs, and multiple linear regressions. RESULTS: Respondents (n = 45) reported a low level of compliance with tobacco control guidelines and recommendations. Results indicate that physicians' familiarity with standard cessation protocols has a significant effect on their tobacco-related practices (r = .35, variance shared = 12%). Self-efficacy and gender were both significantly correlated to tobacco related practices (r = .42, variance shared = 17%). A significant correlation was also found between self-efficacy and knowledge/skills (r = .60, variance shared = 36%). Attitudes/responsibility was not significantly correlated with any of the other measures. CONCLUSION: More resources should be dedicated to training Hispanic physicians in tobacco intervention. Training may facilitate practice by increasing knowledge, developing skills and, ultimately, enhancing feelings of self-efficacy.
Resumo:
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Resumo:
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Resumo:
Nonsyndromic cleft lip with or without cleft palate (nsCL/P, MIM 119530) is perhaps the most common major birth defect. Homozygous PVRL1 loss-of-function mutations result in an autosomal recessive CL/P syndrome, CLPED1, and a PVRL1 nonsense mutation is associated with sporadic nsCL/P in Northern Venezuela. To address the more general role of PVRL1 variation in risk of nsCL/P, we carried out mutation analysis of PVRL1 in North American and Australian nsCL/P cases and population-matched controls. We identified a total of 15 variants, 5 of which were seen in both populations and 1 of which, an in-frame insertion at Glu442, was more frequent in patients than in controls in both populations, though the difference was not statistically significant. Another variant, which is specific to the PVRL1 beta (HIgR) isoform, S447L, was marginally associated with nsCL/P in North American Caucasian patients, but not in Australian patients, and overall variants that affect the beta-isoform were significantly more frequent among North American patients. One Australian patient had a splice junction mutation of PVRL1. Our results suggest that PVRL1 may play a minor role in susceptibility to the occurrence of nsCL/P in some Caucasian populations, and that variation involving the beta (HIgR) isoform might have particular importance for risk of orofacial clefts. Nevertheless, these results underscore the need for studies that involve very large numbers when assessing the possible role of rare variants in risk of complex traits such as nsCL/P.
Resumo:
A plasmid based genetic system was developed for the tail protein of the Salmonella typhimurium bacteriophage P22 and used to isolate and characterize tail protein mutants. The tail protein is a trimeric structural protein of the phage and an endorhamnosidase whose activity is essential for infection. The gene for the tail protein has previously been cloned into a plasmid expression vector and sequenced. A plate complementation assay for tail protein produced from the cloned gene was developed and used to isolate 27 tail protein mutants following mutagenesis of the cloned gene. These mutations were mapped into 12 deletion intervals using deletions which were made on plasmids in vitro and crossed onto P22. The base substitutions were determined by DNA sequencing. The majority of mutants had missense or nonsense mutations in the protein coding portion of the gene; however four of the mutants were in the putative transcription terminator. The oligomeric state of tail protein from the 15 missense mutants was investigated using SDS and nondenaturing polyacrylamide gel electrophoresis of cell lysates. Wild-type tail protein retains its trimeric structure in SDS gels at room temperature. Two of the mutant proteins also migrated as trimers in SDS gels, yet one of these had a considerably faster mobility than wild-type trimer. Its migration was the same as wild-type in a nondenaturing gel, so it is thought to be a trimer which is partially denatured by SDS. Four of the mutants produced proteins which migrate at the position of a monomer in an SDS gel but cannot be seen on a nondenaturing gel. These proteins are thought to be either monomers or soluble aggregates which cannot enter the nondenaturing gel. The remainder of mutants produce protein which is degraded. The mutant tail protein which had normal trimeric mobility on SDS and nondenaturing gels was purified. This protein has essentially wild-type ability to attach to phage capsids, but its endorhamnosidase activity is only 4% of wild-type. ^
Resumo:
Cells infected with a temperature sensitive phenotypic mutant of Moloney sarcoma virus (MuSVts110) exhibit a transformed phenotype at 33('(DEGREES)) and synthesize two virus specific proteins, p85('gag-mos), a gag-mos fusion protein and p58('gag), a truncated gag precursor protein (the gag gene codes for viral structural proteins and mos is the MuSV transforming gene). At 39('(DEGREES)) only p58('gag) is synthesized and the morphology of the cells is similar to uninfected NRK parental cells. Two MuSVts110 specific RNAs are made in MuSVts110-infected cells, one of 4.0 kb in length, the other of 3.5 kb. Previous work indicated that each of these RNAs arose by a single central deletion of parental MuSV genetic material, and that p58('gag) was made by the 4.0 kb RNA and p85('gag-mos) from the 3.5 kb RNA. The objective of my dissertation research was to map precisely the deletion boundaries of both of the MuSVts110 RNAs, and to determine the proper reading frame across both deletion borders. This work succeeded in arriving at the following conclusions: (a) Using S-1 nuclease analysis and primer extension sequencing, it was found that the 4.0 kb MuSVts110 RNA arose by a 1488 base deletion of 5.2 kb parental MuSV genomic RNA. This deletion resulted in an out of frame fusion of the gag and mos genes that resulted in the formation of a "stop" codon which causes termination of translation just beyond the c-terminus of the gag region. Thus, this RNA can only be translated into the truncated gag protein p58('gag). (b) S-1 analysis of RNA from cells cultivated at different temperatures demonstrated that the 4.0 kb RNA was synthesized at all temperatures but that synthesis of the 3.5 kb RNA was temperature sensitive. These observations supported the data derived from blot hybridization experiments the interpretation of which argued for the existence of a single provirus in MuSVts110 infected cells, and hence only a single primary transcript (the 4.0 kb RNA). (c) Analyses similar to those described in (a) above showed that the 3.5 kb RNA was derived from the 4.0 kb MuSVts110 RNA by a further deletion of 431 bases, fusing the gag and mos genes into a continuous reading frame capable of directing synthesis of the p85('gag-mos) protein. These sequence data and the presence of only one MuSVts110-specific provirus, indicate that a splice mechanism is employed to generate the 3.5 kb RNA since the gag and mos genes are observed to be fused in frame in this RNA. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^
Resumo:
It is estimated that 50% of all lung cancer patients continue to smoke after diagnosis. Many of these lung cancer patients who are current smokers often experience tremendous guilt and responsibility for their disease, and feel it might be too late for them to quit smoking. In addition, many oncologists may be heard to say that it is 'too late', 'it doesn't matter', 'it is too difficult', 'it is too stressful' for their patients to stop smoking, or they never identify the smoking status of the patient. Many oncologists feel unprepared to address smoking cessation as part of their clinical practice. In reality, physicians can have tremendous effects on motivating patients, particularly when patients are initially being diagnosed with cancer. More information is needed to convince patients to quit smoking and to encourage clinicians to assist patients with their smoking cessation. ^ In this current study, smoking status at time of lung cancer diagnosis was assessed to examine its impact on complications and survival, after exploring the reliability of smoking data that is self-reported. Logistic Regression was used to determine the risks of smoking prior to lung resection. In addition, survival analysis was performed to examine the impact of smoking on survival. ^ The reliability of how patients report their smoking status was high, but there was some discordance between current smokers and recent quitters. In addition, we found that cigarette pack-year history and duration of smoking cessation were directly related to the rate of a pulmonary complication. In regards to survival, we found that current smoking at time of lung cancer diagnosis was an independent predictor of early stage lung cancer. This evidence supports the idea that it is "never too late" for patients to quit smoking and health care providers should incorporate smoking status regularly into their clinical practice.^