6 resultados para Stochastic simulation methods
em DigitalCommons@The Texas Medical Center
Resumo:
Linkage disequilibrium methods can be used to find genes influencing quantitative trait variation in humans. Linkage disequilibrium methods can require smaller sample sizes than linkage equilibrium methods, such as the variance component approach to find loci with a specific effect size. The increase in power is at the expense of requiring more markers to be typed to scan the entire genome. This thesis compares different linkage disequilibrium methods to determine which factors influence the power to detect disequilibrium. The costs of disequilibrium and equilibrium tests were compared to determine whether the savings in phenotyping costs when using disequilibrium methods outweigh the additional genotyping costs.^ Nine linkage disequilibrium tests were examined by simulation. Five tests involve selecting isolated unrelated individuals while four involved the selection of parent child trios (TDT). All nine tests were found to be able to identify disequilibrium with the correct significance level in Hardy-Weinberg populations. Increasing linked genetic variance and trait allele frequency were found to increase the power to detect disequilibrium, while increasing the number of generations and distance between marker and trait loci decreased the power to detect disequilibrium. Discordant sampling was used for several of the tests. It was found that the more stringent the sampling, the greater the power to detect disequilibrium in a sample of given size. The power to detect disequilibrium was not affected by the presence of polygenic effects.^ When the trait locus had more than two trait alleles, the power of the tests maximized to less than one. For the simulation methods used here, when there were more than two-trait alleles there was a probability equal to 1-heterozygosity of the marker locus that both trait alleles were in disequilibrium with the same marker allele, resulting in the marker being uninformative for disequilibrium.^ The five tests using isolated unrelated individuals were found to have excess error rates when there was disequilibrium due to population admixture. Increased error rates also resulted from increased unlinked major gene effects, discordant trait allele frequency, and increased disequilibrium. Polygenic effects did not affect the error rates. The TDT, Transmission Disequilibrium Test, based tests were not liable to any increase in error rates.^ For all sample ascertainment costs, for recent mutations ($<$100 generations) linkage disequilibrium tests were less expensive than the variance component test to carry out. Candidate gene scans saved even more money. The use of recently admixed populations also decreased the cost of performing a linkage disequilibrium test. ^
Resumo:
The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^
Resumo:
Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters.
Resumo:
(1) A mathematical theory for computing the probabilities of various nucleotide configurations is developed, and the probability of obtaining the correct phylogenetic tree (model tree) from sequence data is evaluated for six phylogenetic tree-making methods (UPGMA, distance Wagner method, transformed distance method, Fitch-Margoliash's method, maximum parsimony method, and compatibility method). The number of nucleotides (m*) necessary to obtain the correct tree with a probability of 95% is estimated with special reference to the human, chimpanzee, and gorilla divergence. m* is at least 4,200, but the availability of outgroup species greatly reduces m* for all methods except UPGMA. m* increases if transitions occur more frequently than transversions as in the case of mitochondrial DNA. (2) A new tree-making method called the neighbor-joining method is proposed. This method is applicable either for distance data or character state data. Computer simulation has shown that the neighbor-joining method is generally better than UPGMA, Farris' method, Li's method, and modified Farris method on recovering the true topology when distance data are used. A related method, the simultaneous partitioning method, is also discussed. (3) The maximum likelihood (ML) method for phylogeny reconstruction under the assumption of both constant and varying evolutionary rates is studied, and a new algorithm for obtaining the ML tree is presented. This method gives a tree similar to that obtained by UPGMA when constant evolutionary rate is assumed, whereas it gives a tree similar to that obtained by the maximum parsimony tree and the neighbor-joining method when varying evolutionary rate is assumed. ^
Resumo:
Software for use with patient records is challenging to design and difficult to evaluate because of the tremendous variability of patient circumstances. A method was devised by the authors to overcome a number of difficulties. The method evaluates and compares objectively various software products for use in emergency departments and compares software to conventional methods like dictation and templated chart forms. The technique utilizes oral case simulation and video recording for analysis. The methodology and experiences of executing a study using this case simulation are discussed in this presentation.
Resumo:
With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.