3 resultados para Stimulatory Cpg Motifs

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repression of many tumor suppressor genes (TSGs) in cancer is mediated by aberrantly increased DNA methylation levels at promoter CpG islands (CGI). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sharp transition of methylation occurs between highly methylated repetitive elements (SINE or LINE) and unmethylated CGI-promoters (e.g. P16, VHL, CDH and RIL) in normal tissues. The functions that lead to increased CGI methylation in cancer remain poorly understood. We propose that CGI-promoters contain cis-elements for triggering de novo DNA methylation. In the first part of our project, we established a site-specific integration system with enforced local transcriptional repression in colorectal cancer cells and monitored the occurrence of de novo DNA methylation in exogenous fragments containing a CGI-promoter and repetitive elements. Initial de novo methylation was seeded at specific CG sites in a repetitive element, and accelerated by persistent binding of a KRAB-containing transcriptional repressor. Furthermore, additional repetitive elements (LINE and SINE) located adjacent to the promoter could confer DNA methylation spreading into the CGI particularly in the setting of KRAB-factor binding. However, a repressive chromatin alone was not sufficient to initiate DNA methylation, which required specific DNA sequences and was integration-site (and/or cell-line) specific. In addition, all the methylation observed showed slow and gradual accumulation over several months of culture. Overall, these results demonstrate a requirement for specific DNA sequences to trigger de novo DNA methylation, and repetitive elements as cis-regulatory factors to cooperate with strengthened transcriptional repression in promoting methylation spreading. In the second part, we re-introduced disrupted DNMT3B or DNMT1 into HCT116 DKO cells and mapped the remethylation pattern through a profiling method (DREAM). Moderate remethylation occurred when DNMT3B was re-expressed with a preference toward non-CGI and non-promoter regions. Hence, there exists a set of genomic regions with priority to be targets for DNMT3B in somatic cells.