9 resultados para Stimulants

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic administration of psychomotor stimulants has been reported to produce behavioral sensitization to its effects on motor activity. This adaptation may be related to the pathophysiology of recurrent psychiatric disorders. Since disturbances in circadian rhythms are also found in many of these disorders, the relationship between sensitization and chronobiological factors became of interest. Therefore, a computerized monitoring system investigated the following: whether repeated exposure to methylphenidate (MPD) and amphetamine (AMP) could produce sensitization to its locomotor effects in the rat; whether sensitization to MPD and AMP was dependent on the circadian time of drug administration; whether the baseline levels of locomotor activity would be effected by repeated exposure to MPD and AMP; whether the expression of a sensitized response could be affected by the photoperiod; and whether MK-801, a non-competitive NMDA antagonist, could disrupt the development of sensitization to MPD. Dawley rats were housed in test cages and motor activity was recorded continuously for 16 days. The first 2 days served as baseline for each rat, and on day 3 each rat received a saline injection. The locomotor response to 0.6, 2.5, or 10 mg/kg of MPD was tested on day 4, followed by five days of single injections of 2.5 mg/kg MPD (days 5–9). After five days without injection (days 10–14) rats were re-challenged (day 15) with the same doses they received on day 4. There were three separate dose groups ran at four different times of administration, 08:00, 14:00, 20:00, or 02:00 (i.e. 12 groups). The same protocol was conducted with AMP with the doses of 0.3, 0.6, and 1.2 mg/kg given on day 4 and 15, and 0.6 mg/kg AMP as the repeated dose on days 5 to 9. In the second set of experiments only sensitization to MPD was investigated. The expression of the sensitized response was dose-dependent and mainly observed with challenge of the lower dose groups. The development of sensitization to MPD and ANT was differentially time-dependent. For MPD, the most robust sensitization occurred during the light phase, with no sensitization during the middle of the dark phase. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavioral sensitization is defined as the subsequent augmentation of the locomotor response to a drug following repeated administrations of the drug. It is believed to occur due to alterations in the motive circuit in the brain by stressors, central nervous system stimulants, and similar stimuli. The motive circuit (or mesocorticolimbic system) consists of several interconnected nuclei that determine the behavioral response to significant biological stimuli. A final target of the mesocorticolimbic system is the nucleus accumbens (NAc), which is a key structure linking motivation and action. In particular, the dopaminergic innervations of the Nac are considered to be essential in regulating motivated states of behavior such as goal-directed actions, stimulus-reward associations and reinforcement by addictive substances. Therefore, the objective of this study was to investigate the role of dopaminergic afferents of the NAc in the behavioral sensitization elicited by chronic treatment with methylphenidate (MPD), a psychostimulant that is widely used to treat attention deficit hyperactivity disorder. The dopaminergic afferents can be selectively destroyed using catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). In order to determine whether destruction of dopaminergic afferents of the NAc prevents sensitization, I compared locomotor activity in rats that had received infusions of 6-hydroxydopamine (6-OHDA) into the NAc with that of control and sham-operated animals. All groups of rats received six days of single daily MPD injections after measuring their pre and post surgery locomotor baseline. Following the consecutive MPD injections, there was a washout period of 4 days, where no injections were given. Then, a rechallenge injection of MPD was given. Behavioral responses after repeated MPD were compared to those after acute MPD to assess behavioral sensitization. Expression of sensitization to MPD was not prevented by 6-OHDA infusion into the NAc. Moreover, two distinct responses were seen to the acute injection of MPD: one group of rats had essentially no response to acute MPD, while the other had an augmented (‘sensitized’-like) acute response. Among rats with 6-OHDA infusions, the animals with diminished acute response to MPD had intact behavioral sensitization to repeated MPD, while the animals with increased acute response to MPD did not exhibit further sensitization to it. This suggests that the acute and chronic effects of MPD have distinct underlying neural circuitries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To examine the relationships between physical growth and medications prescribed for symptoms of attention-deficit hyperactivity disorder in children with HIV. METHODS: Analysis of data from children with perinatally acquired HIV (N = 2251; age 3-19 years), with and without prescriptions for stimulant and nonstimulant medications used to treat attention-deficit hyperactivity disorder, in a long-term observational study. Height and weight measurements were transformed to z scores and compared across medication groups. Changes in z scores during a 2-year interval were compared using multiple linear regression models adjusting for selected covariates. RESULTS: Participants with (n = 215) and without (n = 2036) prescriptions were shorter than expected based on US age and gender norms (p < .001). Children without prescriptions weighed less at baseline than children in the general population (p < .001) but gained height and weight at a faster rate (p < .001). Children prescribed stimulants were similar to population norms in baseline weight; their height and weight growth velocities were comparable with the general population and children without prescriptions (for weight, p = .511 and .100, respectively). Children prescribed nonstimulants had the lowest baseline height but were similar to population norms in baseline weight. Their height and weight growth velocities were comparable with the general population but significantly slower than children without prescriptions (p = .01 and .02, respectively). CONCLUSION: The use of stimulants to treat symptoms of attention-deficit hyperactivity disorder does not significantly exacerbate the potential for growth delay in children with HIV and may afford opportunities for interventions that promote physical growth. Prospective studies are needed to confirm these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylphenidate (MPD), commonly known as Ritalin, is the most frequently prescribed drug to treat children and adults with attention deficit hyperactivity disorder (ADHD). Adolescence is a period of development involving numerous neuroplasticities throughout the central nervous system (CNS). Exposure to a psychostimulant such as MPD during this crucial period of neurodevelopment may cause transient or permanent changes in the CNS. Genetic variability may also influence these differences. Thus, the objective of the present study was to determine whether acute and chronic administration of MPD (0.6, 2.5, or 10.0mg/kg, i.p.) elicit effects among adolescent WKY, SHR, and SD rats and to compare whether there were strain differences. An automated, computerized, open-field activity monitoring system was used to study the dose-response characteristics of acute and repeated MPD administration throughout the 11-day experimental protocol. Results showed that all three adolescent rat groups exhibited dose-response characteristics following acute and chronic MPD administration, as well as strain differences. These strain differences depended on the MPD dose and locomotor index. Chronic treatment of MPD in these animals did not elicit behavioral sensitization, a phenomenon described in adult rats that is characterized by the progressive augmentation of the locomotor response to repeated administration of the drug. These results suggest that the animal's age at time of drug treatment and strain/genetic variability play a crucial role in the acute and chronic effect of MPD and in the development of behavioral sensitization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrophysiological properties of acute and chronic methylphenidate (MPD) on neurons of the prefrontal cortex (PFC) and caudate nucleus (CN) have not been studied in awake, freely behaving animals. The present study was designed to investigate the dose-response effects of MPD on sensory evoked potentials recorded from the PFC and CN in freely behaving rats previously implanted with permanent electrodes, as well as their behavioral (locomotor) activities. On experimental day 1, locomotor behavior of rats was recorded for 2 h post-saline injection, and sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10 mg/kg, i.p., MPD administration. Animals were injected for the next five days with daily 2.5 mg/kg MPD to elicit behavioral sensitization. Locomotor recording was resumed on experimental days 2 and 6 after the MPD maintenance dose followed by 3 days of washout. On experimental day 10, rats were connected again to the electrophysiological recording system and rechallenged with saline and the identical MPD doses as on experimental day 1. On experimental day 11, rat's locomotor recording was resumed before and after 2.5 mg/kg MPD administration. Behavioral results showed that repeated administration of MPD induced behavioral sensitization. Challenge doses (0.6, 2.5, and 10.0 mg/kg) of MPD on experimental day 1 elicited dose-response attenuation in the response amplitude of the average sensory evoked field potential components recorded from the PFC and CN. Chronic MPD administration resulted in attenuation of the PFC's baseline recorded on experimental day 10, while the same treatment did not modulate the baseline recorded from the CN. Treatment of MPD on experimental day 10 resulted in further decrease of the average sensory evoked response compared to that obtained on experimental day 1. This observation of further decrease in the electrophysiological responses after chronic administration of MPD suggests that the sensory evoked responses on experimental day 10 represent neurophysiological sensitization. Moreover, two different response patterns were obtained from PFC and CN following chronic methylphenidate administration. In PFC, the baseline and effect of methylphenidate expressed electrophysiological sensitization on experimental day 10, while recording from CN did not exhibit any electrophysiological sensitization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise is making a resurgence in many countries, given its benefits for fitness as well as prevention of obesity. This trend has spawned many supplements that purport to aid performance, muscle growth, and recovery. Initially, sports drinks were developed to provide electrolyte and carbohydrate replacement. Subsequently, energy beverages (EBs) containing stimulants and additives have appeared in most gyms and grocery stores and are being used increasingly by "weekend warriors" and those seeking an edge in an endurance event. Long-term exposure to the various components of EBs may result in significant alterations in the cardiovascular system, and the safety of EBs has not been fully established. For this review, we searched the MEDLINE and EMBASE databases from 1976 through May 2010, using the following keywords: energy beverage, energy drink, power drink, exercise, caffeine, red bull, bitter orange, glucose, ginseng, guarana, and taurine. Evidence regarding the effects of EBs is summarized, and practical recommendations are made to help in answering the patient who asks, "Is it safe for me to drink an energy beverage when I exercise?"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC), the initial inducible enzyme in the polyamine biosynthetic pathway, exists in the transformed macrophage RAW264 cell line as a phosphoprotein following cell stimulation. The hypothesis that ODC is phosphorylated at multiple sites in stimulated RAW264 cells was investigated. ODC isolated from tetradecanoyl-phorbol-13-acetate (TPA)-stimulated cells metabolically radiolabeled in the presence of $\sp{32}$P$\sb{\rm i}$ was subjected to cyanogen bromide (CNBr) cleavage followed by phosphopeptide mapping and two dimensional phosphoamino acid analysis. These phosphorylation studies demonstrated six in situ phosphorylated CNBr-generated fragments having apparent molecular weights of 17, 14.3, 8, 6.5, 4, and 2.7 kDa and also revealed that ODC is phosphorylated in RAW264 cells on at least 5 serine and 2 threonine residues.^ In addition, the in vivo specific activity and phosphorylation pattern of ODC in response to various kinase cascade stimulants was studied. A differential response in ODC specific activity and a variation in the relative distribution of $\sp{32}$P-labeling of serine and threonine residues on the ODC molecule was noted in response to fetal bovine serum, cAMP and isobutylmethylxanthine, lipopolysaccharide, or TPA.^ Based on information derived from consensus sequence motifs, three protein kinases responsible for the phosphorylation of ODC in vitro were identified. Purified ODC was phosphorylated in vitro by casein kinase II (CK II), extracellular signal-regulated kinase 1 (ERK1), and its activator, extracellular signal-regulated kinase kinase (MEK). CK II phosphorylated ODC on serine residues contained on three CNBr-generated peptides with apparent molecular weights of 14.3, 6.5, and 2.7 kDa. Both ERK1 and MEK phosphorylated ODC on serine and threonine residues on a CNBr-generated peptide fragment with an apparent molecular weight of 6.5 kDa. The in vitro radiolabeled peptides corresponded in molecular mass with some of the CNBr fragments of ODC phosphorylated in situ in stimulated RAW264 cells.^ This study concludes that ODC is phosphorylated in the transformed macrophage RAW264 cell line at multiple sites in response to various kinase cascade stimulants. These stimulants also led to a differential response in specific activity and phosphorylation pattern of ODC in RAW264 cells. Three protein kinases have been identified which phosphorylate ODC in vitro on peptides and amino acid residues which correspond with those phosphorylated in situ. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repeated treatment with psychostimulants produces behavioral sensitization that results in increased locomotor responses so that lower drug doses are required to obtain the same effect and cross-sensitization with other stimulants. Methylphenidate (MPD; Ritalin) is most frequently prescribed to treat children having attention deficit hyperactivity disorder (ADHD), a syndrome with onset in childhood characterized by high levels of inattention, hyperactivity, and impulsivity. Little is known of the consequences involving the long-term use of MPD as treatment for ADHD. This study investigates if there are age, genetic/strain, and sex differences in the prolonged exposure to MPD and cross-sensitization with amphetamine. The objective is to determine whether (a) early exposure to MPD in adolescent rats increases their sensitivity to the drug when they are adult rats, (b) there are strain and sex differences in the response to MPD, and (c) treatment with MPD in adolescent and adult Wistar-Kyoto (WKY), spontaneously hyperactive/hypertensive rat (SHR), and Sprague-Dawley (SD) rat results in cross-sensitization with amphetamine. The hypotheses are that (1) early exposure to MPD in adolescent rats increases their sensitivity to the drug when they reach adulthood, and that this hypersensitivity is dose-, strain-, and sex-dependent and (2) adult rats treated with MPD as adolescents will show a greater cross-sensitization to amphetamine than those adult rats treated with saline as adolescents, and that this cross-sensitization is dose-, strain-, and sex-dependent. The study consists of recording and evaluating locomotor activity of female and male WKY, SHR, and SD rats before and after acute and repeated MPD administration when these rats are young and as adults follows by an amphetamine treatment. Results showed that repeated treatment with MPD elicited behavioral sensitization and cross-sensitization with amphetamine in these animals. The study also found that strain and sex play a crucial role in the differentiated sensitivity to the acute and chronic effects of MPD. The development of behavioral sensitization and cross-sensitization are also dependent on the dose of MPD and the age of the rat. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asbestos and silica are important industrial hazards. Exposure to these dusts can result in pulmonary fibrosis and, in the case of asbestos, cancer. Although the hazards of asbestos and silica exposure have long been known, the pathogenesis of dust-related disease is not well understood. Both silica and asbestos are thought to alter the function of the alveolar macrophage, but the nature of the biochemical alteration is unknown. Therefore, this study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production.^ Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Pertussis toxin pretreatment partially inhibited chrysotile stimulation, suggesting that chrysotile activates a coupling protein in an non-classical manner. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues.^ On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C). Sublethal doses of silica inhibited FNLP-stimulated superoxide anion production, but did not affect phorbol-12,13-dibutyrate-stimulated superoxide anion production, suggesting that the site of inhibition precedes protein kinase C. This inhibition was not due to cell membrane damage, since cell permeability to calcium-45 and rubidium-86 was not increased. It is concluded that chrysotile binds to N-acetylglucosamine residues on macrophage surface glycoproteins to stimulate the physiological pathway resulting in superoxide anion production. In contrast, silica does not stimulate superoxide anion production, but it did inhibit FNLP-stimulated superoxide anion production. ^