6 resultados para Steroidal saponins

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC) and cholesterol that mimics biomembranes. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes. CONCLUSION/SIGNIFICANCE: Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) causes hepatic injury that is mediated, in part, by upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Ketamine has been shown to prevent these effects. Because upregulation of heme oxygenase-1 (HO-1) has hepatoprotective effects, as does carbon monoxide (CO), an end product of the HO-1 catalytic reaction, we examined the effects of HO-1 inhibition on ketamine-induced hepatoprotection and assessed whether CO could attenuate LPS-induced hepatic injury. One group of rats received ketamine (70 mg/kg ip) or saline concurrently with either the HO-1 inhibitor tin protoporphyrin IX (50 micromol/kg ip) or saline. Another group of rats received inhalational CO (250 ppm over 1 h) or room air. All rats were given LPS (20 mg/kg ip) or saline 1 h later and euthanized 5 h after LPS or saline. Liver was collected for iNOS, COX-2, and HO-1 (Western blot), NF-kappaB and PPAR-gamma analysis (EMSA), and iNOS and COX-2 mRNA analysis (RT-PCR). Serum was collected to measure alanine aminotransferase as an index of hepatocellular injury. HO-1 inhibition attenuated ketamine-induced hepatoprotection and downregulation of iNOS and COX-2 protein. CO prevented LPS-induced hepatic injury and upregulation of iNOS and COX-2 proteins. Although CO abolished the ability of LPS to diminish PPAR-gamma activity, it enhanced NF-kappaB activity. These data suggest that the hepatoprotective effects of ketamine are mediated primarily by HO-1 and its end product CO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostaglandin H synthase (PGHS) is a key enzyme in biosynthesis of prostaglandins, thromboxane, and prostacyclin. It has two activities, cyclooxygenase and peroxidase. "PGHS" means PGHS-1. A current hypothesis considers the cyclooxygenase reaction to be a free radical chain reaction, initiated by interaction of the synthase peroxidase with hydroperoxides leading to the production of a tyrosyl free radical. According to this hypothesis, tyrosyl residue(s) may play a key role in the cyclooxygenase reaction. Tetranitromethane (TNM) can relatively selectively nitrate tyrosines at pH 8.0. The effect of TNM on both cyclooxygenase activity and peroxidase activity has been examined: reaction of the synthase holoenzyme with TNM at pH 8.0 led to inactivation of both activities, with the cyclooxygenase activity being lost rapidly and completely, while the peroxidase activity was lost more slowly. Indomethacin, a non-steroidal anti-inflammatory agent, can protect the synthase from the inactivation of TNM. Amino acid analyses indicated that a loss of tyrosine and formation of nitrotyrosine residues occurred during reaction with TNM, and that TNM-reacted holoenzyme with $<$10% residual cyclooxygenase activity had about 2.0 nitrotyrosine/subunit.^ PGH synthase is known to be an endoplasmic reticulum membrane-associated protein. Antibodies directed at particular PGHS peptide segments and indirect immunofluorescence have been used to characterize the membrane topology of crucial portions of PGHS. PGHS was expressed in COS-1 cells transfected with the appropriate cDNA. Stably-transfected human endothelial cells were also used for the topology study. The cells were treated with streptolysin-O, which selectively permeabilizes the plasma membrane, or with saponin to achieve general membrane disruption, before incubation with the antipeptide antibodies. Bound antipeptide antibody was stained by FITC-labelled secondary antibody and visualized by fluorescence microscopy. With the antipeptide antibodies against residues 51-66, 156-170 or 377-390, there was a significant reticular and perinuclear pattern of staining in cells permeabilized with saponin but not in cells permeabilized with SLO alone. Antibodies directed against the endogenous C-terminal peptide or against residues 271-284 produced staining in cells permeabilized with saponin, and also in a lower, but significant fraction of cells permeabilized with SLO. Similar results were obtained when COS-1 cells expressing recombinant PGHS with a viral reporter peptide inserted at the C-terminus were stained with antibody against the reporter epitope.^ The PGHS C-terminal sequence is similar to that of the consensus KDEL ER retention signal. The potential function of the PGHS C-terminus segment in ER retention was examined by mutating this segment and analyzing the subcellular distribution of the mutants expressed in COS-1 cells. None of the mutants had an altered subcellular distribution, although some had greatly diminished the enzyme activities. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mexican immigrants make up the largest subgroup of Hispanics living in the United States. The largest percentage of illegal immigrants comes from México. As such they are a subpopulation with limited access to health care and social services; their health seeking behaviors including self-medication behaviors that, aside from the intake of antibiotics, have not been studied in depth. The analysis of the data presented sought to document the medication behaviors of illegal immigrants living in El Paso County along the U.S.-México border. Of the 80 participants, 31 were taking medication on a regular basis. Of these, 28 claimed that at least one of the medications had been prescribed by a physician, 13 people had bought at least one of their medications in México, nine participants claimed that they had not paid for at least one of the medications they were taking, ten participants reported that they had skipped the doses of at least one of their medications due to monetary constraints. Participants were also asked if they had purchased medication in México during the year prior to the study, 68 of the 80 (85%) participants had bought 295 pharmaceutical products across the border themselves or through a third party. The most frequently purchased medications were antibiotics (17%), followed by syrups, pomades, creams, eardrops, and cold medicine as a group (15%), followed by analgesics (13%) and other non steroidal anti-inflammatory drugs (12%) and oral hypoglycemic agents (6%). ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Cancer cachexia is a common syndrome complex in cancer, occurring in nearly 80% of patients with advanced cancer and responsible for at least 20% of all cancer deaths. Cachexia is due to increased resting energy expenditure, increased production of inflammatory mediators, and changes in lipid and protein metabolism. Non-steroidal anti-inflammatory drugs (NSAIDs), by virtue of their anti-inflammatory properties, are possibly protective against cancer-related cachexia. Since cachexia is also associated with increased hospitalizations, this outcome may also show improvement with NSAID exposure. ^ Design. In this retrospective study, computerized records from 700 non-small cell lung cancer patients (NSCLC) were reviewed, and 487 (69.57%) were included in the final analyses. Exclusion criteria were severe chronic obstructive pulmonary disease, significant peripheral edema, class III or IV congestive heart failure, liver failure, other reasons for weight loss, or use of research or anabolic medications. Information on medication history, body weight and hospitalizations was collected from one year pre-diagnosis until three years post-diagnosis. Exposure to NSAIDs was defined if a patient had a history of being treated with NSAIDs for at least 50% of any given year in the observation period. We used t-test and chi-square tests for statistical analyses. ^ Results. Neither the proportion of patients with cachexia (p=0.27) nor the number of hospitalizations (p=0.74) differed among those with a history of NSAID use (n=92) and those without (n=395). ^ Conclusions. In this study, NSAID exposure was not significantly associated with weight loss or hospital admissions in patients with NSCLC. Further studies may be needed to confirm these observations.^