4 resultados para Standard Reference Intervals
em DigitalCommons@The Texas Medical Center
Resumo:
Intracavitary brachytherapy (ICB) combined with external beam irradiation for treatment of cervical cancer is highly successful in achieving local control. The M.D. Anderson Cancer Center employs Fletcher Suit Delclos (FSD) applicators. FSD applicators contain shields to limit dose to critical structures. Dosimetric evaluation of ICB implants is limited to assessing dose at reference points. These points serve as surrogates for treatment intensity and critical structure dose. Several studies have mentioned that the ICRU38 reference points inadequately characterize the dose distribution. Also, the ovoid shields are rarely considered in dosimetry. ^ The goal of this dissertation was to ascertain the influence of the ovoid shields on patient dose distributions. Monte Carlo dosimetry (MCD) was applied to patient computed tomography(CT) scans. These data were analyzed to determine the effect of the shields on dose to standard reference points and the bladder and rectum. The hypothesis of this work is that the ICRU38 bladder and rectal points computed conventionally are not clinically acceptable surrogates for the maximum dose points as determined by MCD. ^ MCD was applied to the tandem and ovoids. The FSD ovoids and tandem were modeled in a single input file that allowed dose to be calculated for any patient. Dose difference surface histograms(DDSH) were computed for the bladder and rectum. Reference point doses were compared between shielded and unshielded ovoids, and a commercial treatment planning system. ^ The results of this work showed the tandem tip screw caused a 33% reduction in dose. The ovoid shields reduced the dose by a maximum of 48.9%. DDSHs revealed on average 5% of the bladder surface area was spared 53 cGy and 5% of the rectal surface area was spared 195 cGy. The ovoid shields on average reduced the dose by 18% for the bladder point and 25% for the rectal point. The Student's t-test revealed the ICRU38 bladder and rectal points do not predict the maximum dose for these organs. ^ It is concluded that modeling the tandem and ovoid internal structures is necessary for accurate dose calculations, the bladder shielding segments may not be necessary, and that the ICRU38 bladder point is irrelevant. ^
Resumo:
The purpose of this research was development of a method of estimating nutrient availability in populations as approximated by supermarket purchase records. Demographic information describing 12,516 panel households was obtained from a marketing and advertising program operated by H. E. Butt Grocery Company of San Antonio, Texas. A non-probability sample of 2,161 households meeting expenditure criteria was selected and all purchases of dairy products for this sample of households were organized into a database constructed to facilitate the retrieval, aggregation, and analysis of dairy product purchases and their nutrient contents. Two hypotheses were tested: (1) no difference would be found between Hispanic and non-Hispanic purchases of dairy product categories during the study period and (2) no difference would be found between Hispanic and non-Hispanic purchases of nutrients contained in those dairy products during the thirteen-week study period.^ Food purchase records were used to estimate nutrient exposure on a weekly, per capita basis for Hispanic and non-Hispanic households by linking some 40,000 dairy purchase Universal Product code (UPC) numbers with food composition values contained in USDA Handbook 8-1. Results of this study suggest Hispanic sample households consistently purchased fewer dairy products than did non-Hispanic sample households and consequently had fewer nutrients available from dairy purchases. While weekly expenditures for dairy products among the sample households remained relatively constant during the study period, shifts in the types of dairy products purchased were observed. The effect of ethnicity on dairy product and nutrient purchases was significant over the thirteen-week period. A database consisting of customer, household, and purchase information can be developed to successfully associate food item UPC numbers with a standard reference of food composition to estimate nutrient availability in a population over extended periods of time. ^
Resumo:
BACKGROUND: Obstructive sleep apnea is underdiagnosed. We conducted a pilot randomized controlled trial of an online intervention to promote obstructive sleep apnea screening among members of an Internet weight-loss community. METHODS: Members of an Internet weight-loss community who have never been diagnosed with obstructive sleep apnea or discussed the condition with their healthcare provider were randomized to intervention (online risk assessment+feedback) or control. The primary outcome was discussing obstructive sleep apnea with a healthcare provider at 12 weeks. RESULTS: Of 4700 members who were sent e-mail study announcements, 168 (97% were female, age 39.5 years [standard deviation 11.7], body mass index 30.3 [standard deviation 7.8]) were randomized to intervention (n=84) or control (n=84). Of 82 intervention subjects who completed the risk assessment, 50 (61%) were low risk and 32 (39%) were high risk for obstructive sleep apnea. Intervention subjects were more likely than control subjects to discuss obstructive sleep apnea with their healthcare provider within 12 weeks (11% [9/84] vs 2% [2/84]; P=.02; relative risk=4.50; 95% confidence interval, 1.002-20.21). The number needed to treat was 12. High-risk intervention subjects were more likely than control subjects to discuss obstructive sleep apnea with their healthcare provider (19% [6/32] vs 2% [2/84]; P=.004; relative risk=7.88; 95% confidence interval, 1.68-37.02). One high-risk intervention subject started treatment for obstructive sleep apnea. CONCLUSION: An online screening intervention is feasible and likely effective in encouraging members of an Internet weight-loss community to discuss obstructive sleep apnea with their healthcare provider.
Resumo:
Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^