3 resultados para Stafford

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research examines the graduation rate experienced by students receiving public education services in the state of Texas. Special attention is paid to that subgroup of Texas students who meet Texas Education Agency criteria for handicapped status. The study is guided by two research questions: What are the high school completion rates experienced by handicapped and nonhandicapped students attending Texas public schools? and What are the predictors of graduation for handicapped and nonhandicapped students?^ In addition, the following hypotheses are explored. Hypothesis 1: Handicapped students attending a Texas public school will experience a lower rate of high school completion than their nonhandicapped counterparts. Hypothesis 2: Handicapped and nonhandicapped students attending school in a Texas public school with a budget above the median budget for Texas public schools will experience a higher rate of high school completion than similar students in Texas public schools with a budget below the median budget. Hypothesis 3: Handicapped and nonhandicapped students attending school in large Texas urban areas will experience a lower rate of high school completion than similar students in Texas public schools in rural areas. Hypothesis 4: Handicapped and nonhandicapped students attending a Texas public school in a county which rates above the state median for food stamps and AFDC recipients will experience a lower rate of high school completion than students living in counties below the median.^ The study will employ extant data from the records of the Texas Education Agency for the 1988-1989 and the 1989-1990 school years, from the Texas Department of Health for the years of 1989 and 1990, and from the 1980 Census.^ The study reveals that nonhandicapped students are graduating with a two year average rate of.906, while handicapped students following an Individualized Educational Program (IEP) achieve a two year average rate of.532, and handicapped students following the regular academic program present a two year average graduation rate of only.371. The presence of other handicapped students, and the school district's average expense per student are found to contribute significantly to the completion rates of handicapped students. Size groupings are used to elucidate the various impacts of these variables on different school districts and different student groups.^ Conclusions and implications are offered regarding the need to reach national consensus on the definition and computation of high school completion for both handicapped and nonhandicapped students, and the need for improved statewide tracking of handicapped completion rates. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed microdosimetric characterization of the M. D. Anderson 42 MeV (p,Be) fast neutron beam was performed using the techniques of microdosimetry and a 1/2 inch diameter Rossi proportional counter. These measurements were performed at 5, 15, and 30 cm depths on the central axis, 3 cm inside, and 3 cm outside the field edge for 10 $\times$ 10 and 20 $\times$ 20 cm field sizes. Spectra were also measured at 5 and 15 cm depth on central axis for a 6 $\times$ 6 cm field size. Continuous slowing down approximation calculations were performed to model the nuclear processes that occur in the fast neutron beam. Irradiation of the CR-39 was performed using a tandem electrostatic accelerator for protons of 10, 6, and 3 MeV and alpha particles of 15, 10, and 7 MeV incident energy on target at angles of incidence from 0 to 85 degrees. The critical angle as well as track etch rate and normal incidence diameter versus linear energy transfer (LET) were obtained from these measurements. The bulk etch rate was also calculated from these measurements. Dose response of the material was studied, and the angular distribution of charged particles created by the fast neutron beam was measured with CR-39. The efficiency of CR-39 was calculated versus that of the Rossi chamber, and an algorithm was devised for derivation of LET spectra from the major and minor axis dimensions of the observed tracks. The CR-39 was irradiated in the same positions as the Rossi chamber, and the derived spectra were compared directly. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current standard for temperature sensitive imaging using magnetic resonance (MR) is 2-D, spoiled, fast gradient-echo (fGRE) phase-difference imaging exploiting temperature dependent changes in the proton resonance frequency (PRF). The echo-time (TE) for optimal sensitivity is larger than the typical repetition time (TR) of an fGRE sequence. Since TE must be less than TR in the fGRE sequence, this limits the technique's achievable sensitivity, spatial, and temporal resolution. This adversely affects both accuracy and volume coverage of the measurements. Accurate measurement of the rapid temperature changes associated with pulsed thermal therapies, such as high-intensity focused ultrasound (FUS), at optimal temperature sensitivity requires faster acquisition times than those currently available. ^ Use of fast MR acquisition strategies, such as interleaved echo-planar and spiral imaging, can provide the necessary increase in temporal performance and sensitivity while maintaining adequate signal-to-noise and in-plane spatial resolution. This research explored the adaptation and optimization of several fast MR acquisition methods for thermal monitoring of pulsed FUS thermal therapy. Temperature sensitivity, phase-difference noise and phase-difference to phase-difference-to noise ratio for the different pulse sequences were evaluated under varying imaging parameters in an agar gel phantom to establish optimal sequence parameters for temperature monitoring. The temperature sensitivity coefficient of the gel phantom was measured, allowing quantitative temperature extrapolations. ^ Optimized fast sequences were compared based on the ability to accurately monitor temperature changes at the focus of a high-intensity focused ultrasound unit, volume coverage, and contrast-to-noise ratio in the temperature maps. Operating parameters, which minimize complex phase-difference measurement errors introduced by use of the fast-imaging methods, were established. ^