3 resultados para Square Root Model
em DigitalCommons@The Texas Medical Center
Resumo:
Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^
Resumo:
Coronary heart disease remains the leading cause of death in the United States and increased blood cholesterol level has been found to be a major risk factor with roots in childhood. Tracking of cholesterol, i.e., the tendency to maintain a particular cholesterol level relative to the rest of the population, and variability in blood lipid levels with increase in age have implications for cholesterol screening and assessment of lipid levels in children for possible prevention of further rise to prevent adulthood heart disease. In this study the pattern of change in plasma lipids, over time, and their tracking were investigated. Also, within-person variance and retest reliability defined as the square root of within-person variance for plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides and their relation to age, sex and body mass index among participants from age 8 to 18 years were investigated. ^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. We examined the relationship between repeated observations by Pearson's correlations. Age- and sex-specific quintiles were calculated and the probability of participants to remain in the uppermost quintile of their respective distribution was evaluated with life table methods. Plasma total cholesterol, HDL-C and LDL-C at baseline were strongly and significantly correlated with measurements at subsequent visits across the sex and age groups. Plasma triglyceride at baseline was also significantly correlated with subsequent measurements but less strongly than was the case for other plasma lipids. The probability to remain in the upper quintile was also high (60 to 70%) for plasma total cholesterol, HDL-C and LDL-C. ^ We used a mixed longitudinal, or synthetic cohort design with continuous observations from age 8 to 18 years to estimate within person variance of plasma total cholesterol, HDL-C, LDL-C and triglycerides. A total of 5809 measurements were available for both cholesterol and triglycerides. A multilevel linear model was used. Within-person variance among repeated measures over up to four years of follow-up was estimated for total cholesterol, HDL-C, LDL-C and triglycerides separately. The relationship of within-person and inter-individual variance with age, sex, and body mass index was evaluated. Likelihood ratio tests were conducted by calculating the deviation of −2log (likelihood) within the basic model and alternative models. The square root of within-person variance provided the retest reliability (within person standard deviation) for plasma total cholesterol, HDL-C, LDL-C and triglycerides. We found 13.6 percent retest reliability for plasma cholesterol, 6.1 percent for HDL-cholesterol, 11.9 percent for LDL-cholesterol and 32.4 percent for triglycerides. Retest reliability of plasma lipids was significantly related with age and body mass index. It increased with increase in body mass index and age. These findings have implications for screening guidelines, as participants in the uppermost quintile tended to maintain their status in each of the age groups during a four-year follow-up. The magnitude of within-person variability of plasma lipids influences the ability to classify children into risk categories recommended by the National Cholesterol Education Program. ^
Resumo:
A Bayesian approach to estimation of the regression coefficients of a multinominal logit model with ordinal scale response categories is presented. A Monte Carlo method is used to construct the posterior distribution of the link function. The link function is treated as an arbitrary scalar function. Then the Gauss-Markov theorem is used to determine a function of the link which produces a random vector of coefficients. The posterior distribution of the random vector of coefficients is used to estimate the regression coefficients. The method described is referred to as a Bayesian generalized least square (BGLS) analysis. Two cases involving multinominal logit models are described. Case I involves a cumulative logit model and Case II involves a proportional-odds model. All inferences about the coefficients for both cases are described in terms of the posterior distribution of the regression coefficients. The results from the BGLS method are compared to maximum likelihood estimates of the regression coefficients. The BGLS method avoids the nonlinear problems encountered when estimating the regression coefficients of a generalized linear model. The method is not complex or computationally intensive. The BGLS method offers several advantages over Bayesian approaches. ^