2 resultados para Spraying nozzle

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uveal melanoma is a rare but life-threatening form of ocular cancer. Contemporary treatment techniques include proton therapy, which enables conservation of the eye and its useful vision. Dose to the proximal structures is widely believed to play a role in treatment side effects, therefore, reliable dose estimates are required for properly evaluating the therapeutic value and complication risk of treatment plans. Unfortunately, current simplistic dose calculation algorithms can result in errors of up to 30% in the proximal region. In addition, they lack predictive methods for absolute dose per monitor unit (D/MU) values. ^ To facilitate more accurate dose predictions, a Monte Carlo model of an ocular proton nozzle was created and benchmarked against measured dose profiles to within ±3% or ±0.5 mm and D/MU values to within ±3%. The benchmarked Monte Carlo model was used to develop and validate a new broad beam dose algorithm that included the influence of edgescattered protons on the cross-field intensity profile, the effect of energy straggling in the distal portion of poly-energetic beams, and the proton fluence loss as a function of residual range. Generally, the analytical algorithm predicted relative dose distributions that were within ±3% or ±0.5 mm and absolute D/MU values that were within ±3% of Monte Carlo calculations. Slightly larger dose differences were observed at depths less than 7 mm, an effect attributed to the dose contributions of edge-scattered protons. Additional comparisons of Monte Carlo and broad beam dose predictions were made in a detailed eye model developed in this work, with generally similar findings. ^ Monte Carlo was shown to be an excellent predictor of the measured dose profiles and D/MU values and a valuable tool for developing and validating a broad beam dose algorithm for ocular proton therapy. The more detailed physics modeling by the Monte Carlo and broad beam dose algorithms represent an improvement in the accuracy of relative dose predictions over current techniques, and they provide absolute dose predictions. It is anticipated these improvements can be used to develop treatment strategies that reduce the incidence or severity of treatment complications by sparing normal tissue. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. First synthesized in 1874, dichlorodiphenyltrichloroethane (DDT) was not used until the second half of World War II after its insecticidal properties were discovered in 1939. For decades DDT has been used globally with the intent of eradicating malaria. This began in 1955 when the eighth World Health Assembly launched a global campaign selecting DDT as the chemical of choice for the eradication of malaria. The United States banned DDT use in 1972 partially due to the publication of “Silent Spring” by Rachel Carson in 1962 which suggested that DDT was harmful to the environment, wildlife and is a carcinogen. ^ Objectives. To critically review the literature on DDT, and evaluate its importance in malaria prevention and control. Methods: The design of this systematic literature review is a narrative summary and evaluation of the papers reviewed. The data came from searches using PubMed and MEDLINE which are free and publicly available databases. Inclusive criteria that were considered during the search are English language peer reviewed journal articles published in the last 20 years. The keywords were: “insecticidal and agricultural use of DDT”, “human impact of malaria”, “economic impact of malaria”, “benefits of DDT”, “effects of DDT”, “importance of malaria control”, and alternatives to DDT for malaria control. ^ Results. Malaria continues to be one of the most common infectious diseases and creates a tremendous global public health problem. WHO recommends DDT for malaria vector control because compared to other pesticides, it is the most persistent in indoor spraying. ^ Conclusion. Indoor spraying of DDT in malaria endemic areas may cause increased exposure of the chemical to humans; however I conclude that the overall benefits outweigh the risks because more lives are saved due to fewer infections with malaria.^