33 resultados para Sprague Dawley rat

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: High-resolution, vascular MR imaging of the spine region in small animals poses several challenges. The small anatomic features, extravascular diffusion, and low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long-circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomic features of the perispinal vasculature not visible with conventional contrast agent (gadolinium-diethylene-triaminepentaacetic acid [Gd-DTPA]). METHODS: In this study, high-resolution MR angiography of the spine region was performed in a rat model using a liposomal-Gd, which is known to remain within the blood pool for an extended period. The imaging characteristics of this agent were compared with those of a conventional contrast agent, Gd-DTPA. RESULTS: The liposomal-Gd enabled acquisition of high quality angiograms with high signal-to-noise ratio. Several important vascular features, such as radicular arteries, posterior spinal vein, and epidural venous plexus were visualized in the angiograms obtained with the liposomal agent. The MR angiograms obtained with conventional Gd-DTPA did not demonstrate these vessels clearly because of marked extravascular soft-tissue enhancement that obscured the vasculature. CONCLUSIONS: This study demonstrates the potential benefit of long-circulating liposomal-Gd as a MR contrast agent for high-resolution vascular imaging applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68(+) immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylphenidate (MPD), commonly known as Ritalin, is the most frequently prescribed drug to treat children and adults with attention deficit hyperactivity disorder (ADHD). Adolescence is a period of development involving numerous neuroplasticities throughout the central nervous system (CNS). Exposure to a psychostimulant such as MPD during this crucial period of neurodevelopment may cause transient or permanent changes in the CNS. Genetic variability may also influence these differences. Thus, the objective of the present study was to determine whether acute and chronic administration of MPD (0.6, 2.5, or 10.0mg/kg, i.p.) elicit effects among adolescent WKY, SHR, and SD rats and to compare whether there were strain differences. An automated, computerized, open-field activity monitoring system was used to study the dose-response characteristics of acute and repeated MPD administration throughout the 11-day experimental protocol. Results showed that all three adolescent rat groups exhibited dose-response characteristics following acute and chronic MPD administration, as well as strain differences. These strain differences depended on the MPD dose and locomotor index. Chronic treatment of MPD in these animals did not elicit behavioral sensitization, a phenomenon described in adult rats that is characterized by the progressive augmentation of the locomotor response to repeated administration of the drug. These results suggest that the animal's age at time of drug treatment and strain/genetic variability play a crucial role in the acute and chronic effect of MPD and in the development of behavioral sensitization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of perfusion in longitudinal studies allows for the assessment of tissue integrity and the detection of subtle pathologies. In this work, the feasibility of measuring brain perfusion in rats with high spatial resolution using arterial spin labeling is reported. A flow-sensitive alternating recovery sequence, coupled with a balanced gradient fast imaging with steady-state precession readout section was used to minimize ghosting and geometric distortions, while achieving high signal-to-noise ratio. The quantitative imaging of perfusion using a single subtraction method was implemented to address the effects of variable transit delays between the labeling of spins and their arrival at the imaging slice. Studies in six rats at 7 T showed good perfusion contrast with minimal geometric distortion. The measured blood flow values of 152.5+/-6.3 ml/100 g per minute in gray matter and 72.3+/-14.0 ml/100 g per minute in white matter are in good agreement with previously reported values based on autoradiography, considered to be the gold standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolism of the antitumor agent 6-thioguanine (TG, NSC-752) by rat liver was studied in vitro. Livers from adult male Sprague-Dawley rats were homogenized and the "liver homogenate" was subjected to differential centrifugation to obtain the "10,000 x g pellet", the "post-mitochondrial fraction", the "cytosol fraction", and the "microsomes". The homogenity of each fraction was estimated by appropriate marker enzyme assays. To delineate the in vitro metabolism of TG by rat liver, 0.2 mM of {8-('14)C}TG was incubated with different subcellular fractions in KCl-Tris-MgCl(,2) buffer, pH 7.4 at 37(DEGREES). The metabolites formed were identified by chromatography, UV spectrometry, as well as mass spectrometry. After a 1 hr incubation, TG was metabolized by the liver homogenate, the 10,000 x g pellet and the post-mitochondrial fraction mainly to 6-thioguanosine (TGR), accompanied by varying lesser amounts of 6-thiouric acid (TUA), allantoin, guanine-6-sulfinic acid (G-SO(,2)H) and an unknown product. In comparison, the cytosal fraction converted TG almost entirely to TGR and TUA in equal amounts. The formation of TGR from TG was limited by the endogenous supply of ribose-1-phosphate. With the microsomal fraction, however, TG was metabolized significantly to G-SO(,2)H and the unknown, accompanied with some TGR. After a 5 hr incubation the metabolism of TG was changed to favor the catabolic route, yielding mostly TUA in the post-mitochondrial and cytosol fractions; but mainly allantoin in the liver homogenate fraction. The kinetic studies of TG metabolism by the subcellar fractions indicated that the formation of TGR served as a depot form of TG. The level of TGR decreased when the catabolism of TG became prominent. The oxidation of TG to GSO(,2)H mediated by the hepatic microsomes represented a new catabolic pathway of TG. This GSO(,2)H, under acidic conditions, readily decomposes to guanine and inorganic sulfate. In the presence of reduced glutathione in Tris buffer, pH 7.8 at 25(DEGREES), GSO(,2)H is adducted to glutathione chemically to form S-(2-amino-purin-6-yl) glutathione and conceivably, inorganic sulfate. Therefore, the formation of GSO(,2)H from TG might have implication in the desulfuration mechanism of TG. On the other hand, the unknown formed from TG by the action of the microsomal enzymes appeared to be a TG conjugate. However, it is neither a glutathione, a glucuronide, nor a ribose conjugate. Additionally, the deamination of TG by guanine deaminase (E.C.3.5.4.3) isolated from rat liver was also investigated. TG is a poorer substrate (Km = 4.8 x 10('-3)M) for guanine deaminase than that of guanine (Km = 4.7 x 10('-6)M) at pH 7.25, optimal pH for TG as a substrate. TG is also a competitive inhibitor of guanine for guanine deaminase, with a ki of 2.2 x 10('-4)M. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pregnant Sprague-Dawley rats were gavaged with vehicle (olive oil) or 37.5, 75, 150 or 300 mg/kg of (DELTA)('9)-Tetrahydrocannabinol (THC) on days 18 or 19 of gestation. Male offspring as well as a group of hypophysectomized rats (positive control) were sacrificed at 35 days of age, while females and hypophysectomized control were sacrificed at 36 days of age. The sex-differences in ethylmorphine-N-demethylase and aniline hydroxylase liver activities were evaluated.^ Ethylmorphine-N-demethylase activity showed a significant difference between males and females from control and 37.5, 75 and 150 mg/kg THC dosed groups. Female offspring exposed prenatally to 300 mg/kg THC had a significant increase (p < .01) in N-demethylation activity, while their male counterparts had similar enzyme activity to those found in the male groups from control and 37.5 to 150 mg/kg THC dosed. Moreover, the percent increase in the 300 mg/kg THC dosed females was similar to that detected in the hypophysectomized female rats (positive control). As expected no sex difference in aniline hydroxylase activity was detected in control as well as exposed groups, including the 300 mg/kg THC dosed group.^ It is concluded that (DELTA)('9)-Tetrahydrocannabinol administered once by gavage in days 18 or 19 of gestation alters the liver Mixed Function Oxidase (MFO) sexual dimorphism imprinting process of the rat. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECT: Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS: Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS: At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS: The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the "pulmonary first-pass effect," which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modulation of gene regulation by progesterone (P) and its classical intracellular regulation by progestin receptors in the brain, resulting in alterations in physiology and behavior has been well studied. The mechanisms mediating the short latency effects of P are less well understood. Recent studies have revealed rapid nonclassical signaling action of P involving the activation of intracellular signaling pathways. We explored the involvement of protein kinase C (PKC) in P-induced rapid signaling in the ventromedial nucleus of the hypothalamus (VMN) and preoptic area (POA) of the rat brain. Both the Ca2+-independent (basal) PKC activity representing the activation of PKC by the in vivo treatments and the Ca+2-dependent (total) PKC activity assayed in the presence of exogenous cofactors in vitro were determined. A comparison of the two activities demonstrated the strength and temporal status of PKC regulation by steroid hormones in vivo. P treatment resulted in a rapid increase in basal PKC activity in the VMN but not the POA. Estradiol benzoate priming augmented P-initiated increase in PKC basal activity in both the VMN and POA. These increases were inhibited by intracerebroventricular administration of a PKC inhibitor administered 30 min prior to P. The total PKC activity remained unchanged demonstrating maximal PKC activation within 30 min in the VMN. In contrast, P regulation in the POA significantly attenuated total PKC activity +/- estradiol benzoate priming. These rapid changes in P-initiated PKC activity were not due to changes in PKC protein levels or phosphorylation status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Daunorubicin (DNR) is an anthracycline antibiotic used as a cancer chemotherapeutic agent. However, it causes mammary adenocarcinomas in female Sprague-Dawley (SD) rats. Vitamin E (E) has been found to reduce DNR carcinogenicity. I investigated the mechanism of DNR carcinogenicity and its interaction with E in SD rats by studying DNR-DNA adduct formation and the influence of E status on DNR clearance and free radical producing and detoxifying enzymes.^ The hypothesis was that DNR exerts its tumorigenic effect via free radicals generated during redox cycling and production of reactive intermediates capable of forming DNA adducts. E was postulated to act as a protective agent through a combination of its antioxidant property, modulation of drug clearance and levels of free radical producing and detoxifying enzymes.^ DNA adduct formation was measured by the nuclease P1 $\sp{32}$P-post labeling assay. In vitro, DNR was activated by rat liver microsomes and either NADPH or cumene hydrogen peroxide (CuOOH). Rat liver DNA incubated with this mixture formed two adducts when the cofactor was NADPH and three adducts when CuOOH was used. In vivo, SD rats were treated with i.v. doses of DNR. No detectable DNR-DNA adducts were formed in liver or mammary DNA in vivo, although there was an intensification of endogenous DNA adducts.^ Groups, 1, 2, 3 and 4 of weanling female SD rats were fed 0, 100, 1,000 and 10,000 mg $\alpha$-tocopheryl acetate/kg diet respectively. A comparison of Groups 1 and 4 showed no effect of E status on clearance of 10 mg tritiated DNR/kg body weight over 72 hours. However, liver cleared DNR at a faster rate than mammary epithelial cells (MEC).^ Xanthine oxidase, which catalyzes DNR redox cycling, was significantly decreased in liver and MEC of rats in group 4 compared to groups 1, 2, and 3. Detoxifying enzymes were not dramatically affected by E supplementation. Quinone reductase in MEC was significantly increased in group 4 compared to other groups. Overall, the liver had higher levels of free radical detoxifying enzymes compared to MEC.^ These data support a role of free radicals in DNR carcinogenicity because (1) endogenous DNA adducts formed due to free radical insult are further intensified by DNR treatment in vivo, (2) MEC, the specific target of DNR carcinogenicity, cannot rapidly clear DNR and have a lower free radical detoxifying capability than liver, (3) E supplementation caused lowering of free radical generating potential via xanthine oxidase, and increased DNR detoxification due to elevation of quinone reductase in MEC. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Repeated treatment with psychostimulants produces behavioral sensitization that results in increased locomotor responses so that lower drug doses are required to obtain the same effect and cross-sensitization with other stimulants. Methylphenidate (MPD; Ritalin) is most frequently prescribed to treat children having attention deficit hyperactivity disorder (ADHD), a syndrome with onset in childhood characterized by high levels of inattention, hyperactivity, and impulsivity. Little is known of the consequences involving the long-term use of MPD as treatment for ADHD. This study investigates if there are age, genetic/strain, and sex differences in the prolonged exposure to MPD and cross-sensitization with amphetamine. The objective is to determine whether (a) early exposure to MPD in adolescent rats increases their sensitivity to the drug when they are adult rats, (b) there are strain and sex differences in the response to MPD, and (c) treatment with MPD in adolescent and adult Wistar-Kyoto (WKY), spontaneously hyperactive/hypertensive rat (SHR), and Sprague-Dawley (SD) rat results in cross-sensitization with amphetamine. The hypotheses are that (1) early exposure to MPD in adolescent rats increases their sensitivity to the drug when they reach adulthood, and that this hypersensitivity is dose-, strain-, and sex-dependent and (2) adult rats treated with MPD as adolescents will show a greater cross-sensitization to amphetamine than those adult rats treated with saline as adolescents, and that this cross-sensitization is dose-, strain-, and sex-dependent. The study consists of recording and evaluating locomotor activity of female and male WKY, SHR, and SD rats before and after acute and repeated MPD administration when these rats are young and as adults follows by an amphetamine treatment. Results showed that repeated treatment with MPD elicited behavioral sensitization and cross-sensitization with amphetamine in these animals. The study also found that strain and sex play a crucial role in the differentiated sensitivity to the acute and chronic effects of MPD. The development of behavioral sensitization and cross-sensitization are also dependent on the dose of MPD and the age of the rat. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this report we test the hypothesis that long-term virus-induced alterations in CYP occur from changes initiated by the virus that may not be related to the immune response. Enzyme activity, protein expression and mRNA of CYP3A2, a correlate of human CYP3A4, and CYP2C11, responsive to inflammatory mediators, were assessed 0.25, 1, 4, and 14 days after administration of several different recombinant adenoviruses at a dose of 5.7 x 1012 virus particles (vp)/kg to male Sprague Dawley rats. Wild type adenovirus, containing all viral genes, suppressed CYP3A2 and 2C11 activity by 37% and 39%, respectively within six hours. Levels fell to 67% (CYP3A2) and 79% (CYP2C11) of control by 14 days (p

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels are a family of ion channels activated by the binding of cyclic nucleotides. Endogenous channels have been used to measure cyclic nucleotide signals in photoreceptor outer segments and olfactory cilia for decades. Here we have investigated the subcellular localization of cGMP signals by monitoring CNG channel activity in response to agonists that activate either particulate or soluble guanylyl cyclase. CNG channels were heterologously expressed in either human embryonic kidney (HEK)-293 cells that stably overexpress a particulate guanylyl cyclase (HEK-NPRA cells), or cultured vascular smooth muscle cells (VSMCs). Atrial natriuretic peptide (ANP) was used to activate the particulate guanylyl cyclase and the nitric oxide donor S-nitroso-n-acetylpenicillamine (SNAP) was used to activate the soluble guanylyl cyclase. CNG channel activity was monitored by measuring Ca2+ or Mn2+ influx through the channels using the fluorescent dye, fura-2. We found that in HEK-NPRA cells, ANP-induced increases in cGMP levels activated CNG channels in a dose-dependent manner (0.05-10 nM), whereas SNAP (0.01-100 microM) induced increases in cGMP levels triggered little or no activation of CNG channels (P < 0.01). After pretreatment with 100 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, ANP-induced Mn2+ influx through CNG channels was significantly enhanced, while SNAP-induced Mn2+ influx remained small. In contrast, we found that in the presence of IBMX, both 1 nM ANP and 100 microM SNAP triggered similar increases in total cGMP levels. We next sought to determine if cGMP signals are compartmentalized in VSMCs, which endogenously express particulate and soluble guanylyl cyclase. We found that 10 nM ANP induced activation of CNG channels more readily than 100 muM SNAP; whereas 100 microM SNAP triggered higher levels of total cellular cGMP accumulation. These results suggest that cGMP signals are spatially segregated within cells, and that the functional compartmentalization of cGMP signals may underlie the unique actions of ANP and nitric oxide.