13 resultados para Split and Merge
em DigitalCommons@The Texas Medical Center
Resumo:
Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^
Resumo:
Left ventricular outflow tract (LVOT) defects are an important group of congenital heart defects (CHDs) because of their associated mortality and long-term complications. LVOT defects include aortic valve stenosis (AVS), coarctation of aorta (CoA), and hypoplastic left heart syndrome (HLHS). Despite their clinical significance, their etiology is not completely understood. Even though the individual component phenotypes (AVS, CoA, and HLHS) may have different etiologies, they are often "lumped" together in epidemiological studies. Though "lumping" of component phenotypes may improve the power to detect associations, it may also lead to ambiguous findings if these defects are etiologically distinct. This is due to potential for effect heterogeneity across component phenotypes. ^ This study had two aims: (1) to identify the association between various risk factors and both the component (i.e., split) and composite (i.e., lumped) LVOT phenotypes, and (2) to assess the effect heterogeneity of risk factors across component phenotypes of LVOT defects. ^ This study was a secondary data analysis. Primary data were obtained from the Texas Birth Defect Registry (TBDR). TBDR uses an active surveillance method to ascertain birth defects in Texas. All cases of non complex LVOT defects which met our inclusion criteria during the period of 2002–2008 were included in the study. The comparison groups included all unaffected live births for the same period (2002–2008). Data from vital statistics were used to evaluate associations. Statistical associations between selected risk factors and LVOT defects was determined by calculating crude and adjusted prevalence ratio using Poisson regression analysis. Effect heterogeneity was evaluated using polytomous logistic regression. ^ There were a total of 2,353 cases of LVOT defects among 2,730,035 live births during the study period. There were a total of 1,311 definite cases of non-complex LVOT defects for analysis after excluding "complex" cardiac cases and cases associated with syndromes (n=168). Among infant characteristics, males were at a significantly higher risk of developing LVOT defects compared to females. Among maternal characteristics, significant associations were seen with maternal age > 40 years (compared to maternal age 20–24 years) and maternal residence in Texas-Mexico border (compared to non-border residence). Among birth characteristics, significant associations were seen with preterm birth and small for gestation age LVOT defects. ^ When evaluating effect heterogeneity, the following variables had significantly different effects among the component LVOT defect phenotypes: infant sex, plurality, maternal age, maternal race/ethnicity, and Texas-Mexico border residence. ^ This study found significant associations between various demographic factors and LVOT defects. While many findings from this study were consistent with results from previous studies, we also identified new factors associated with LVOT defects. Additionally, this study was the first to assess effect heterogeneity across LVOT defect component phenotypes. These findings contribute to a growing body of literature on characteristics associated with LVOT defects. ^
Resumo:
The "EMR Tutorial" is designed to be a bilingual online physician education environment about electronic medical records. After iterative assessment and redesign, the tutorial was tested in two groups: U.S. physicians and Mexican medical students. Split-plot ANOVA revealed significantly different pre-test scores in the two groups, significant cognitive gains for the two groups overall, and no significant difference in the gains made by the two groups. Users rated the module positively on a satisfaction questionnaire.
Resumo:
Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.
Resumo:
The hypothesis to be tested is that there are two distinct types of chronic responses in irradiated normal tissues, each resulting from damage to different cell populations in the tissue. The first is a sequala of chronic epithelial depletion in which the tissue's integrity cannot be maintained, i.e. a "consequential" chronic response. The other response is due to cell loss in the connective tissue and/or vascular stroma, i.e. a "primary" chronic response. The purpose of this study was to test the hypothesis in the murine colon by first, establishing a model of each chronic response and then, by determining whether the responses differed in timing of expression, histology, and expression of specific collagen types. The model of late damage used was colonic obstructions/strictures induced by a single dose of 27 Gy ("consequential" response) and two equal doses of 14.75 Gy (t = 10 days) ("primary" response). "Consequential" lesions appeared as early as 5 weeks after 27 Gy and were characterized by a deep mucosal ulceration and a thickened fibrotic serosa containing excessive accumulations of collagen types I and III. Both types were commingled in the scar at the base of the ulcer. Fibroblasts were synthesizing pro-collagen types I and III mRNA 10 weeks prior to measurable increases in collagen. A significant decrease in the ratio of collagen types I:III was associated with the "consequential" response at 4-5 months post-irradiation. The "primary" response, on the other hand, did not appear until 40 weeks after the split dose even though the total dose delivered was approximately the same as that for the "consequential" response. The "primary" response was characterized with an intact mucosa and a thickened fibrotic submucosa which contained excessive amounts of only collagen type I. An increased number of fibroblasts were synthesizing pro-collagen type I mRNA nearly 25 weeks before collagen type I levels were increased. The "primary" response lesion had a significantly elevated collagen type I:III ratio at 10-13 months post-irradiation. These data show a clear difference between the two chronic response and suggest that not all chronic responses share a common pathogenesis, but depend on the cell population in the tissue that is damaged. ^
Resumo:
Pem, a member of the PEPP homeobox family, is expressed in somatic cells in male and female reproductive tissues. In the adult murine testis, Pem is specifically expressed in Sertoli cells, where it is restricted to stages IV–VIII of the seminiferous epithelial cycle. To identify Pem's function in Sertoli cells, transgenic mice were generated that express Pem in Sertoli cells during all stages of the seminiferous epithelial cycle. This resulted in an increase in double-strand DNA breaks in preleptotene spermatocytes and single-strand DNA breaks in elongating spermatids. My results suggest that Pem regulates Sertoli-cell genes that encode secreted or cell-surface proteins that serve to control premeiotic DNA replication, DNA repair, and/or chromatin remodeling in the adjacent germ cells. Three additional transgenic mouse containing varying lengths of the Pem male-specific promoter (Pp) were generated to identify the sequences responsible for regulating Pem expression in the testis and epididymis. My analysis suggests that there are at least two regulatory regions in the Pem Pp. In the testis, region II directs androgen-dependent expression specifically in Sertoli cells whereas region I fine-tunes stage-specific expression by acting as a negative regulator. In the epididymis, region II confers androgen-dependent, developmentally-regulated expression in the caput whereas region I prevents inappropriate expression in the corpus. I also report the identification and characterization of two human PEPP family members related to Pem that I have named hPEPP1 and hPEPP2. The hPEPP1 and hPEPP2 homeodomains are more closely related to PEPP subfamily homeodomains than to any other homeodomain subfamily. Both genes are localized to the specific region of the human X chromosome that shares synteny with the region on the murine X chromosome containing three PEPP homeobox genes, Pem, Psx-1, and Psx-2. hPEPP1 and hPEPP2 mRNA expression is restricted to the testis but is aberrantly expressed in tumor cells of different origins, analogous to the expression pattern of Pem but not of Psx-1 or Psx-2. Unlike all known PEPP members, neither hPEPP1 nor hPEPP2 are expressed in placenta, which suggests that the regulation of the PEPP family has undergone significant alteration since the split between hominids and rodents. ^
Resumo:
This study aimed to develop and validate The Cancer Family Impact Scale (CFIS), an instrument for use in studies investigating relationships among family factors and colorectal cancer (CRC) screening when family history is a risk factor. We used existing data to develop the measure from 1,285 participants (637 families) across the United States who were in the Johns Hopkins Colon Cancer Genetic Testing study. Participants were 94% white with an average age of 50.1 years, and 60% were women. None had a personal CRC history, and eighty percent had 1 FDR with CRC and 20% had more than one FDR with CRC. The study had three aims: (1) to identify the latent factors underlying the CFIS via exploratory factor analysis (EFA); (2) to confirm the findings of the EFA via confirmatory factor analysis (CFA); and (3) to assess the reliability of the scale via Cronbach's alpha. Exploratory analyses were performed on a split half of the sample, and the final model was confirmed on the other half. The EFA suggested the CFIS was an 18-item measure with 5 latent constructs: (1) NEGATIVE: negative effects of cancer on the family; (2) POSITIVE: positive effects of cancer on the family; (3) COMMUNICATE: how families communicate about cancer; (4) FLOW: how information about cancer is conveyed in families; and (5) NORM: how individuals react to family norms about cancer. CFA on the holdout sample showed the CFIS to have a reasonably good fit (Chi-square = 389.977, df = 122, RMSEA= 0.058 (.052-.065), CFI=.902, TLI=.877, GF1=.939). The overall reliability of the scale was α=0.65. The reliability of the subscales was: (1) NEGATIVE α = 0.682; (2) POSITIVE α = 0.686; (3) COMMUNICATE α = 0.723; (4) FLOW α = 0.467; and (5) NORM α = 0.732. ^ We concluded the CFIS to be a good measure with most fit levels over 0.90. The CFIS could be used to compare theoretically driven hypotheses about the pathways through which family factors could influence health behavior among unaffected individuals at risk due to family history, and also aid in the development and evaluation of cancer prevention interventions including a family component. ^
Resumo:
In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication and thus mediate hormone action. Characterization of specific Wnt signaling components in the endometrium was performed using cellular localization studies and evaluating hormone effects in a rat model. Wnt7a was expressed in the luminal epithelium, whereas the extracellular Wnt modulator, SFRP4, was localized to the endometrial stroma. SFRP4 expression is significantly decreased in endometrial carcinoma and aberrant Wnt7a signaling has been shown to cause uterine defects and contribute to the onset of disease. The specific Fzds and SFRPs that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of Wnt7a and SFRP4 in the endometrium has not been addressed. A survey of all Wnt signaling proteins expressed in the endometrium was conducted and Fzd5 and Fzd10 were identified as two receptors capable of transducing the Wnt7a signal. Biologically active recombinant Wnt7a and SFRP4 proteins were purified for quantitative biochemical studies. In Ishikawa cells, Wnt7a binding to Fzd5 activated β-catenin/canonical Wnt signaling and increased cellular proliferation. Wnt7a signaling mediated by Fzd10 induced a non-canonical/JNK-responsive pathway. SFRP4 suppressed Wnt7a action in both an autocrine and paracrine manner. Treatment with SFRP4 protein and overexpression of SFRP4 inhibited endometrial cancer cell growth and induced apoptosis in vitro. A split-eGFP complementation assay was developed to visually detect Wnt7a-Fzd interactions and subsequent pathway activation in cells. By employing a unique ELISA-based protein-protein binding technique, it was demonstrated that Wnt7a binds to SFRP4 and Fzd5 with equal nanomolar affinity. The development of these novel biological tools could lead to a better understanding of Wnt-protein interactions and the identification of new modulators of Wnt signaling. This study supports a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent upon the Fzd repertoire of the cell and can be regulated by SFRP4. The potential tumor suppressor function of SFRP4 suggests it may serve as a therapeutic target for endometrial carcinoma. ^
Resumo:
Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^
TRANSCRIPTIONAL AND POST-TRANSLATIONAL MECHANISMS CONTRIBUTE TO MAINTENANCE OF REST IN NEURAL TUMORS
Resumo:
The RE-1 silencing transcription factor (REST) is an important regulator of normal nervous system development. It negatively regulates neuronal lineage specification in neural progenitors by binding to its consensus RE-1 element(s) located in the regulatory region of its target neuronal differentiation genes. The developmentally coordinated down-regulation of REST mRNA and protein in neural progenitors triggers terminal neurogenesis. REST is overexpressed in pediatric neural tumors such as medulloblastoma and neuroblastoma and is associated with poor neuronal differentiation. High REST protein correlate with poor prognosis for patients with medulloblastoma, however similar studies have not been done with neuroblastoma patients. Mechanism(s) underlying elevated REST levels medulloblastoma and neuroblastoma are unclear, and is the focus of this thesis project. We discovered that transcriptional and post-translational mechanisms govern REST mis-regulation in medulloblastoma and neuroblastoma. In medulloblastoma, REST transcript is aberrantly elevated in a subset of patient samples. Using loss of function and gain of function experiments, we provide evidence that the Hairy Enhancer of Split (HES1) protein represses REST transcription in medulloblastoma cell lines, modulates the expression of neuronal differentiation genes, and alters the survival potential of these cells in vitro. We also show that REST directly represses its own expression in an auto-regulatory feedback loop. Interestingly, our studies identified a novel interaction between REST and HES1. We also observed their co-occupancy at the RE-1 sites, thereby suggesting potential for co-regulation of REST expression. Our pharmacological studies in neuroblastoma using retinoic acid revealed that REST levels are controlled by transcriptional and post-transcriptional mechanisms. Post-transcriptional mechanisms are mediated by modulation of E3 ligase or REST, SCFβ-TRCP, and contribute to resistance of some cells to retinoic acid treatment.
Resumo:
BACKGROUND: This observational research study investigated the association of cardiorespiratory fitness and weight status with repeated measures of 24-hr ambulatory blood pressure (24-hr ABP). Little is known about these associations and few data exist examining the interaction between cardiorespiratory fitness and weight status and the contributions of each on 24-hr ABP in youth. ^ METHODS: This research study used secondary analysis data from the "Adolescent Blood Pressure and Anger: Ethnic Differences" study. This current study sample included 374 African-American, Anglo-American, and Mexican-American adolescents 11-16 years of age. Mixed-effects models were used for testing the relationship between weight status and cardiorespiratory fitness and repeated measures of ambulatory blood pressure over 24 hours (24-hr ABP). Weight status was categorized into "normal weight" (BMI<85th percentile), "overweight" (85th≤BMI<95th), and "obese" (BMI≥95th). Cardiorespiratory fitness, determined by heart rate recovery (HRR), was defined as the difference between heart rate at peak exercise and heart rate at two minutes post-exercise, as measured by a height-adjusted step test and stratified into two groups: low and high fitness, using a median split. Ambulatory blood pressure (ABP) was monitored for a 24-hr period on a school day using the Spacelabs ambulatory monitor (Model 90207). Blood pressure and heart rate were recorded at 30 minute intervals throughout the day of recording and at 60 minute intervals during sleep. ^ RESULTS: No significant associations were found between weight status and mean 24-hr systolic blood pressure (SBP) or mean arterial pressure (MAP). A significant and inverse association between weight status and mean 24-hr diastolic blood pressure (DBP) was revealed. Cardiorespiratory fitness was significantly and inversely associated with mean 24-hr ABP. High fitness adolescents had significantly lower mean 24-hr SPB, DBP, and MAP measurements than low fitness adolescents. Compared to low fitness adolescents, high fitness adolescents had 1.90 mmHg, 1.16 mmHg, and 1.68 mmHg lower mean 24-hr SBP, DBP, and MAP, respectively. Additionally, high fitness appeared to afford protection from higher mean 24-hr SBP and MAP, irrespective of weight status. Among normal weight adolescents, low fitness resulted in higher mean 24-hr SBP and MAP, compared to their fit counterparts. Among adolescents categorized as high fitness, increasing weight status did not appear to result in higher mean 24-hr SBP or MAP. Cardiorespiratory fitness, rather than weight status, appeared to be a more dominant predictor of mean 24-hr SBP and MAP. ^ CONCLUSIONS: To our knowledge, this research is the first study to investigate the independent and combined contributions of cardiorespiratory fitness and weight status on 24-hr ABP, all objectively measured. The results of this study may potentially guide and inform future research. It appears that early cardiovascular disease (CVD) prevention should focus on improving cardiorespiratory fitness levels among all adolescents, particularly those adolescents least fit, regardless of their weight status, while obesity prevention efforts continue.^
Resumo:
Tumor growth often outpaces its vascularization, leading to development of a hypoxic tumor microenvironment. In response, an intracellular hypoxia survival pathway is initiated by heterodimerization of hypoxia-inducible factor (HIF)-1α and HIF-1β, which subsequently upregulates the expression of several hypoxia-inducible genes, promotes cell survival and stimulates angiogenesis in the oxygen-deprived environment. Hypoxic tumor regions are often associated with resistance to various classes of radio- or chemotherapeutic agents. Therefore, development of HIF-1α/β heterodimerization inhibitors may provide a novel approach to anti-cancer therapy. To this end, a novel approach for imaging HIF-1α/β heterodimerization in vitro and in vivo was developed in this study. Using this screening platform, we identified a promising lead candidate and further chemically derivatized the lead candidate to assess the structure-activity relationship (SAR). The most effective first generation drug inhibitors were selected and their pharmacodynamics and anti-tumor efficacy in vivo were verified by bioluminescence imaging (BLI) of HIF-1α/β heterodimerization in the xenograft tumor model. Furthermore, the first generation drug inhibitors, M-TMCP and D-TMCP, demonstrated efficacy as monotherapies, resulting in tumor growth inhibition via disruption of HIF-1 signaling-mediated tumor stromal neoangiogenesis.
Resumo:
Normal humans have one red and at least one green visual pigment genes. These genes are tightly linked as tandem repeats on the X chromosome and each of them has six exons. There is only one X-linked visual pigment gene in New World monkeys (NWMs) but the locus has three polymorphic alleles encoding red, yellow and green visual pigments, respectively. The spectral properties of the squirrel monkey and the marmoset (both NWMs) have been studied and partial sequences of the three alleles are available. To study the evolutionary history of these X-linked opsin genes in humans and NWMs, coding and intron sequences of the three squirrel monkey alleles and the three marmoset alleles were amplified by PCR followed by subcloning and sequencing. Introns 2 and 4 of the human red and green pigment genes were also sequenced. The results obtained are as follows: (1) The sequences of introns 2 and 4 of the human red and green opsin genes are significantly more similar between the two genes than are coding sequences, contrary to the usual situation where coding regions are better conserved in evolution than are introns. The high similarities in the two introns are probably due to recent gene conversion events during evolution of the human lineage. (2) Phylogenetic analysis of both intron and exon sequences indicates that the phylogenetic tree of the available primate opsin genes is the same as the species tree. The two human genes were derived from a gene duplication event after the divergence of the human and NWM lineages. The three alleles in each of the two NWM species diverged after the split of the two NWMs but have persisted in the population for at least 5 million years. (3) Allelic gene conversion might have occurred between the three squirrel monkey alleles. (4) A model of additive effect of hydroxyl-bearing amino acids on spectral tuning is proposed by treating some unknown variables as groups. Under the assumption that some residues have no effect, it is found that at least five amino acid residues, at positions 178 (3 nm), 180 (5 nm), 230 ($-$4 nm), 277 (9 nm) and 285 (13 nm), have linear spectral tuning effects. (5) Adaptive evolution of the opsin genes to different spectral peaks was observed at four residues that are important for spectral tuning. ^