3 resultados para Sphagnum protozoa
em DigitalCommons@The Texas Medical Center
Resumo:
Most tissue-invasive parasitic helminths prime for type 1 hypersensitivity or anaphylaxis during some phase of their life cycles. A prototype in this regard is the nematode Trichinella spiralis. Blood protozoa capable of tissue invasion, such as Trypanosoma brucei, might also be expected to prime for the expression of anaphylaxis. However, this response is usually absent in protozoal infections. The hypothesis tested was that failure of hosts infected with T.brucei to express anaphylaxis is related to this parasite's ability to selectively down-regulate immunoglobulin E (IgE) production, and not to an innate lack of allergenicity on the part of T.brucei-derived antigens. This hypothesis was tested by studying in the intestine of rats, antigen-induced Cl$\sp-$ secretion, which results from a local anaphylactic response mediated by IgE and mucosal mast cells. The Cl$\sp-$ secretory response can be primed either by infection with T.spiralis or by the parenteral administration of antigen. Anaphylaxis-induced Cl$\sp-$ secretion is expressed in vitro, and can be quantified electrophysiologically, as a change in transmural short-circuit current when sensitized intestine is mounted in Ussing chambers and challenged with the sensitizing antigen.^ Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge. In contrast, the intestine of rats infected with T.brucei failed to respond to challenge with trypanosome antigen. Infection with T.brucei also suppressed antigen-induced Cl$\sp-$ secretion in rats sensitized and challenged with various antigens, including T.spiralis antigen. However, T.brucei infection did not inhibit the anaphylactic response in rats concomitantly infected with T.spiralis. Relative to the anaphylactic mediators, T.brucei infection blocked production of IgE in rats parenterally injected with antigen but not in T.spiralis-infected hosts. Also, the mucosal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. These results support the conclusion that the failure to express anaphylaxis-mediated Cl$\sp-$ secretion in T.brucei infected rats, is due to this protozoan's ability to inhibit IgE production and not to the lack of allergenicity of trypanosome antigens. ^
Resumo:
Groundwater constitutes approximately 30% of freshwater globally and serves as a source of drinking water in many regions. Groundwater sources are subject to contamination with human pathogens (viruses, bacteria and protozoa) from a variety of sources that can cause diarrhea and contribute to the devastating global burden of this disease. To attempt to describe the extent of this public health concern in developing countries, a systematic review of the evidence for groundwater microbially-contaminated at its source as risk factor for enteric illness under endemic (non-outbreak) conditions in these countries was conducted. Epidemiologic studies published in English language journals between January 2000 and January 2011, and meeting certain other criteria, were selected, resulting in eleven studies reviewed. Data were extracted on microbes detected (and their concentrations if reported) and on associations measured between microbial quality of, or consumption of, groundwater and enteric illness; other relevant findings are also reported. In groundwater samples, several studies found bacterial indicators of fecal contamination (total coliforms, fecal coliforms, fecal streptococci, enterococci and E. coli), all in a wide range of concentrations. Rotavirus and a number of enteropathogenic bacteria and parasites were found in stool samples from study subjects who had consumed groundwater, but no concentrations were reported. Consumption of groundwater was associated with increased risk of diarrhea, with odds ratios ranging from 1.9 to 6.1. However, limitations of the selected studies, especially potential confounding factors, limited the conclusions that could be drawn from them. These results support the contention that microbial contamination of groundwater reservoirs—including with human enteropathogens and from a variety of sources—is a reality in developing countries. While microbially-contaminated groundwaters pose risk for diarrhea, other factors are also important, including water treatment, water storage practices, consumption of other water sources, water quantity and access to it, sanitation and hygiene, housing conditions, and socio-economic status. Further understanding of the interrelationships between, and the relative contributions to disease risk of, the various sources of microbial contamination of groundwater can guide the allocation of resources to interventions with the greatest public health benefit. Several recommendations for future research, and for practitioners and policymakers, are presented.^