3 resultados para Spectrin

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xenopus ARVCF (xARVCF), a member of p120-catenin subfamily, binds cadherin cytoplasmic domains to enhance cadherin metabolic stability, or when dissociated, modulates Rho-family GTPases. We previously found that xARVCF binds directly to Xenopus KazrinA (xKazrinA), a widely expressed, conserved protein that bears little homology to established protein families. xKazrinA is also known to influence keratinocyte proliferation-differentiation and cytoskeletal activity. In my study, I first evaluated the expression pattern of endogenous Kazrin RNA and protein in Xenopus embryogenesis as well as in adult tissues. We then collaboratively predicted the helical structure of Kazrin’s coiled-coil domain, and I obtained evidence of Kazrin’s dimerization/oligomerization. In considering the intracellular localization of the xARVCF-catenin:xKazrin complex, I did not resolve xKazrinA in a larger ternary complex with cadherin, nor did I detect its co-precipitation with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin. This suggested a potential means by which xKazrinA localizes to cell-cell junctions, and indeed, biochemical assays confirmed a ternary xARVCF:xKazrinA:xβ2-spectrin complex. Functionally, I demonstrated that xKazrin stabilizes cadherins by negatively modulating the RhoA small-GTPase. I further revealed that xKazrinA binds to p190B RhoGAP (an inhibitor of RhoA), and enhances p190B’s association with xARVCF. Supporting their functional interaction in vivo, Xenopus embryos depleted of xKazrin exhibited ectodermal shedding, a phenotype that could be rescued with exogenous xARVCF. Cell shedding appeared to be caused by RhoA activation, which consequently altered actin organization and cadherin function. Indeed, I was capable of rescuing Kazrin depletion with ectopic expression of p190B RhoGAP. In addition, I obtained evidence that xARVCF and xKazrin participate in craniofacial development, with effects observed upon the neural crest. Finally, I found that xKazrinA associates further with delta-catenin and p0071-catenin, but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin sub-family. Taken together, my study supports Kazrin’s essential role in development, and reveals KazrinA’s biochemical and functional association with ARVCF-catenin, spectrin and p190B RhoGAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TBI produces a consistent and extensive loss of neurofilament 68 (NF68) and neurofilament 200 (NF200), key intermediate cytoskeletal proteins found in neurons including axons and dendrites, in cortical samples from injured brain. The presence of low molecular weight NF68 breakdown products (BDPs) strongly suggest that calpain proteolysis at least in part contributes to neurofilament (NF) protein loss following injury. Furthermore, one and two-dimensional gel electrophoresis analyses of NF BDPs obtained from in situ and in vitro tissue also implicated the involvement of calpain 2 mediated proteolysis of neurofilaments following TBI. Immunohistochemical examination of derangements in cytoskeletal proteins following traumatic brain injury in rats indicated that preferential dendritic rather than axonal damage occurs within three hours post-TBI. Although proteolysis of cytoskeletal proteins occurred concurrently with early morphological alterations, evidence of proteolysis preceded the full expression of evolutionary histopathological changes. Furthermore, cytoskeletal immunofluorescence alterations were not restricted to the site of impact. Confocal microscopic investigations of NF68 and NF200 immunofluorescence within injured cortical neurons revealed alterations in neurofilament assembly in the absence of NF derangements detectable at the light microscopic level ($<$15 minutes post-TBI). Collectively immunohistochemistry studies suggest that derangements to neuronal processes are biochemical and evolutionary in nature, and not due solely to mechanical shearing. Importantly, a systemically administered calpain inhibitor (calpain inhibitor 2) significantly reduced NF200, NF68, and spectrin protein loss as well as providing marked preservation of NF proteins in neuronal somata, dendrites, and axons at 24 hours post-TBI. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researchers have historically emphasized the contribution of caspase-3 to apoptotic but not necrotic cell death, while calpain has been implicated primarily in necrosis and, to a lesser extent, in apoptosis. Activation of these proteases occurs in vivo following various CNS insults including ischemia. In addition, both necrotic and apoptotic cell death phenotypes are detected following ischemia. However, the contributions of calpain and caspase-3 to apoptotic and necrotic cell death phenotypes following CNS insults are relatively unexplored. To date, no study has examined the concurrent activation of calpain and caspase-3 in necrotic and apoptotic cell death phenotypes following any CNS insult. The present study employed oxygen-glucose deprivation (OGD) to determine the relative contributions of caspase-3 and calpain to apoptotic and necrotic cell death following OGD. Experiments characterized a model of OGD by evaluating cell viability and characterizing the cell death phenotypes following OGD in primary septo-hippocampal co-cultures. Furthermore, cell markers (NeuN and MAP2 or GFAP) assessed the effects of OGD on neuronal and astroglial viability, respectively. In addition, calpain and caspase-3 mediated proteolysis of α-spectrin was examined using Western blot techniques. Activation of these proteases in individual cells phenotypically characterized as apoptotic and necrotic was also evaluated by using antibodies specific for calpain or caspase-3 mediated breakdown products to α-spectrin. Administration of appropriate caspase-3 and calpain inhibitors also examined the effects of protease inhibition on cell death. OGD produced prominent expression of apoptotic cell death phenotypes primarily in neurons, with relatively little damage to astroglia. Although Western blot data suggested greater proteolysis of α-spectrin by calpain than caspase-3, co-activation of both proteases was usually detected in cells exhibiting apoptotic or necrotic cell death phenotypes. While inhibition of calpain and caspase-3 activity decreased LDH release following OGD, it was not clear whether this effect was also associated with a decrease in cell death and the appearance of apoptotic cell death phenotypes. These data demonstrate that both calpain and caspase-3 contribute to the expression of apoptotic cell death phenotypes following OGD, and that calpain could potentially have a larger role in the expression of apoptotic cell death than previously thought. ^