5 resultados para Specific recognition
em DigitalCommons@The Texas Medical Center
Resumo:
The sigma (σ) subunit of eubacterial RNA polymerase (RNAP) is required for specific recognition of promoter DNA sequences and transcription initiation. Regulation of bacterial gene expression can be achieved by modulating a factor activity. The Bacillus subtilis sporulation a σ factor, σ K, controls gene expression of the late sporulation regulon. σ K is synthesized as an inactive precursor protein, pro-σ K, with a 20 amino acid pro sequence. Proteolytic processing of the pro sequence produces the active form, σK, which is able to bind to the core subunits of RNAP to direct gene expression. Thus, the pro sequence renders σK inactive in vivo. After processing, the amino terminus of σK consists of region 1.2, which is conserved among various σ factors. To understand the role of the amino terminus of σK, namely the pro sequence and region 1.2, mutagenesis of both regions was pursued. NH 2-terminal truncations of pro-σK were constructed to address how the pro sequence silences σK activity. The work described here shows that the pro sequence inhibits the ability of σ K to associate with the core subunits and that a deletion of only six amino acids of the pro sequence is sufficient to activate pro-σ K for DNA binding and transcription initiation to levels similar to σ K. Additionally, site directed mutagenesis was used to obtain single amino acid substitutions in region 1.2 to address the role of region 1.2 in σ K transcriptional activity. Two mutations were isolated, converting a lysine (K) to an alanine (A) at position three, and an asparagine (N) to a tyrosine (Y) at position five, both of which alter the efficiency of transcription initiation by RNAP containing the mutant σKs. Surprisingly, σ KK3A increased transcript production when compared to wild type. This increase is due to improvement in DNA affinity and increased stability of RNAP-DNA promoter open complexes. σKN5Y showed a decrease in transcription activity that is related to defects in the ability of RNAP to make the transition from the closed to open RNAP-DNA complex. Results of both the pro sequence and region 1.2 analyses indicate that the amino terminus of σK is important for transcription activity and this work adds to the increasing body of evidence that the amino termini of many σ factors modulate transcription initiation by RNAP. ^
Resumo:
Galactosyltransferase (GalTase) is localized in the Golgi, where it functions in oligosaccharide synthesis, as well as on the cell surface where it serves as a cell adhesion molecule. GalTase-specific adhesions are functional in a number of important biological events, including F9 embryonal carcinoma (EC) cell adhesions. GalTase-based adhesions are formed by recognition and binding to terminal N-acetylglucosamine (GlcNAc) residues on its glycoprotein counterpart on adjacent cell surfaces. The object of this work has been to investigate the formation and function of GalTase-specific adhesions during F9 cell growth and differentiation. We initially investigated GalTase synthesis during differentiation and found that the increase in GalTase activity was specific for the Golgi compartment; surface GalTase levels remained constant during differentiation. These data indicated that the increase in cell adhesions expected with increased cell-matrix interaction in differentiated F9 cells is not the consequence of increased surface GalTase expression and, more interestingly, that the two pools of GalTase are under differential regulation. Synthesis and recognition of the consociate glycoprotein component was next investigated. Surface GalTase recognized several surface glycoproteins in a pattern that changes with differentiation. Uvomorulin, lysosome-associated membrane protein-1 (LAMP-1), and laminin were recognized by surface GalTase and are, therefore, potential components in GalTase-specific adhesions. Furthermore, these interactions were aberrant in an adhesion-defective F9 cell line that results, at least in part, from abnormal oligosaccharide synthesis. The function played by surface GalTase in growth and induction of differentiation was examined. Inhibition of surface GalTase function by a panel of reagents inhibited F9 cell growth. GalTase expression at both the transcription and protein levels were differentially regulated during the cell cycle, with surface expression greatest in the G1 phase. Disruption of GalTase adhesion by exposure to anti-GalTase antibodies during this period resulted in extension of the G2 phase, a result similar to that seen with agents known to inhibit growth and induce differentiation. Finally, other studies have suggested that a subset of cell adhesion molecules have the capability to induce differentiation in EC cells systems. We have determined in F9 cells that dissociating GalTase adhesion by galactosylation of and release of the consociate glycoproteins induces differentiation, as defined by increased laminin synthesis. The ability to induce differentiation by surface galactosylation was greatest in cells grown in cultures promoting cell-cell adhesions, relative to cultures with minimal cell-cell interactions. ^
Resumo:
DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^
Resumo:
The antigen recognition site of antibodies is composed of residues contributed by the variable domains of the heavy and light chain subunits (VL and VH domains). VL domains can catalyze peptide bond hydrolysis independent of VH domains (Mei S et al. J Biol Chem. 1991 Aug 25;266(24):15571-4). VH domains can bind antigens noncovalently independent of V L domains (Ward et al. Nature. 1989 Oct 12;341(6242):544-6). This dissertation describe the specific hydrolysis of fusion proteins containing the hepatitis C virus coat protein E2 by recombinant hybrid Abs composed of the heavy chain of a high affinity anti-E2 IgG1 paired with light chains expressing promiscuous catalytic activity. The proteolytic activity was evident from electrophoresis assays using recombinant E2 substrates containing glutathione S-transferase (E2-GST) or FLAG peptide (E2-FLAG) tags. The proteolytic reaction proceeded more rapidly in the presence of the hybrid IgG1 compared to the unpaired light chain, consistent with accelerated peptide bond hydrolysis due to noncovalent VH domain-E2 recognition. An active site-directed inhibitor of serine proteases inhibited the proteolytic activity of the hybrid IgG, indicating a serine protease mechanism. Binding studies confirmed that the hybrid IgG retained detectable noncovalent E2 recognition capability, although at a level smaller than the wildtype anti-E2 IgG. Immunoblotting of E2-FLAG treated with the hybrid IgG suggested a scissile bond within E2 located ∼11 kD from the N terminus of the protein. E2-GST was hydrolyzed by the hybrid IgG at peptide bonds located in the GST tag. The differing cleavage pattern of E2-FLAG and E2-GST can be explained by the split-site model of catalysis, in which conformational differences in the E2 fusion protein substrates position alternate peptide bonds in register with the antibody catalytic subsite despite a common noncovalent binding mechanism. This is the first proof-of principle that the catalytic activity of a light chain can be rendered antigen-specific by pairing with a noncovalently binding heavy chain subunit. ^
Resumo:
The combitiatorial approach restriction endonuclease protection selection and amplification REPSA was successfully used to determine ideal DNA interactions sites of covalent ligands. Unlike most other combinatorial methods, REPSA is based on inhibition of enzymatic cleavage by specific ligand-DNA complexes, which enables identification of binding sites of various ligands. However, the inherent nature of this technique posses a problem during selection of binding sites of covalent ligands. By modifying the technique according to the nature of the ligand, we demonstrate the flexibility of REPSA in identifying the preferred binding sites for monocovalent ligands, topoisomerase I and tallimustine, and the bicovalent ligand topoisomerase II. From among the preferred binding sites, we identified the consensus binding sequence of camptothecin induced topoisomerase I cleavage as ‘aGWT/Gc’, and tallimustine consensus sequences as ‘GTTCTA’ and ‘TTTTTTC’. We have shown for the first time that preferential binding of tallimustine occurs at sequences not previously reported. Furthermore, our data indicate that tallimustine is a novel DNA minor groove, guanine-specific alkylating agent. ^ Additionally, we have demonstrated in vivo that sequence-specific covalent DNA-binding small molecules have the ability to regulate transcription by inhibiting RNA polymerase II. Tallimustine, binding to its preferred sequences located in the 5′ untranslated region were an effective impediment for transcribing polymerase II. The ability of covalent binding small molecules to target predetermined DNA sequences located downstream of the promoter suggests a general approach for regulation of gene expression. ^