1 resultado para Spatial concentration and centralization of economic activities
em DigitalCommons@The Texas Medical Center
Resumo:
Previously reported androgen receptor concentrations in rat testis and testicular cell types have varied widely. In the studies reported here a nuclear exchange assay was established in rat testis in which exchange after 86 hours at 4$\sp\circ$C was greater than 85% complete and receptor was stable. Receptor concentration per DNA measured by exchange declined between 15 and 25 days of age in the rat testis, then increased 4-fold during sexual maturation. Proliferation of germ cells which had low receptor concentration appeared to account for the early decline in testicular receptor concentration, whereas increase in receptor number per Sertoli cell between 25 and 35 days of age contributed to the later increase. Increase in Leydig cell number during maturation appeared to account for the remainder of the increase due to the high receptor concentration in these cells. Detailed studies showed that other possible explanations for changes in receptor number (e.g. shifts in receptor concentration between the cytosol and nuclear subcellular compartments or changes in the affinity of the receptor for its ligands) were not likely.^ Androgen receptor dynamics in testicular cells showed rapid, specific uptake of ($\sp3$H) -testosterone that was easily blocked by unlabeled testosterone (RA of 7 nM in both cell types), and medroxyprogesterone acetate (RA of 28 and 16 nM in Sertoli and peritubular cells, respectively), but not as well by the anti-androgens cyproterone acetate (RA of 116 and 68 nM) and hydroxyflutamide (RA of 300 and 180 nM). The affinity of the receptor for the ligand dimethylnortestosterone was similar in the two cell types (K$\rm\sb{d}$ values of 0.78 and 0.71 nM for Sertoli and peritubular cells) and was virtually identical with the affinity of the whole testis receptor (0.89 nM). Medroxyprogesterone acetate and testosterone significantly increased nuclear androgen receptor concentration relative to untreated controls in Sertoli and peritubular cells, whereas hydroxyflutamide and cyproterone acetate did not. Despite the different embryological origins of peritubular and Sertoli cells, their responses to both androgens and anti-androgens were similar. In addition, these studies suggest that peritubular cells are as likely as Sertoli cells to be primary androgen targets. ^