6 resultados para Spatial Epidemiology
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: Prostate cancer mortality disparities exist among racial/ethnic groups in the United States, yet few studies have explored the spatiotemporal trend of the disease burden. To better understand mortality disparities by geographic regions over time, the present study analyzed the geographic variations of prostate cancer mortality by three Texas racial/ethnic groups over a 22-year period. METHODS: The Spatial Scan Statistic developed by Kulldorff et al was used. Excess mortality was detected using scan windows of 50% and 90% of the study period and a spatial cluster size of 50% of the population at risk. Time trend was analyzed to examine the potential temporal effects of clustering. Spatial queries were used to identify regions with multiple racial/ethnic groups having excess mortality. RESULTS: The most likely area of excess mortality for blacks occurred in Dallas-Metroplex and upper east Texas areas between 1990 and 1999; for Hispanics, in central Texas between 1992 and 1996: and for non-Hispanic whites, in the upper south and west to central Texas areas between 1990 and 1996. Excess mortality persisted among all racial/ethnic groups in the identified counties. The second scan revealed that three counties in west Texas presented an excess mortality for Hispanics from 1980-2001. Many counties bore an excess mortality burden for multiple groups. There is no time trend decline in prostate cancer mortality for blacks and non-Hispanic whites in Texas. CONCLUSION: Disparities in prostate cancer mortality among racial/ethnic groups existed in Texas. Central Texas counties with excess mortality in multiple subgroups warrant further investigation.
Resumo:
West Nile Virus (WNV) is an arboviral disease that has affected hundreds of residents in Harris County, Texas since its introduction in 2002. Persistent infection, lingering sequelae and other long-term symptoms of patients reaffirm the need for prevention of this important vector-borne disease. This study aimed to determine if living within 400m of a water body increases one’s odds of infection with WNV. Additionally, we wanted to determine if one’s proximity to a particular water type or water body source increased one’s odds of infection with WNV.^ 145 cases’ addresses were abstracted from the initial interview and consent records from a cohort of patients (Epidemiology of Arboviral Encephalitis in Houston study, HSC-SPH-03-039). After applying inclusion criteria, 140 cases were identified for analysis. 140 controls were selected for analysis using a population proportionate to size model and US Census Bureau data. MapMarker USA v14 was used to geocode the cases’ addresses. Both cases’ and controls’ coordinates were uploaded onto a Harris County water shapefile in MapInfo Professional v9.5.1. Distance in meters to the closest water source, closest water source type, and closest water source name were recorded.^ Analysis of Variance (p=0.329, R2 = 0.0034) indicated no association between water body distance and risk of WNV disease. Living near a creek (x2 = 11.79, p < 0.001), or the combined group of creek and gully (x 2 = 14.02, p < 0.001) were found to be strongly associated with infection of WNV. Living near Cypress Creek and its feeders (x2 = 15.2, p < 0.001) was found to be strongly associated with WNV infection. We found that creek and gully habitats, particularly Cypress Creek, were preferential for the local disease transmitting Culex quinquefasciatus and reservoir avian population.^
Resumo:
In geographical epidemiology, maps of disease rates and disease risk provide a spatial perspective for researching disease etiology. For rare diseases or when the population base is small, the rate and risk estimates may be unstable. Empirical Bayesian (EB) methods have been used to spatially smooth the estimates by permitting an area estimate to "borrow strength" from its neighbors. Such EB methods include the use of a Gamma model, of a James-Stein estimator, and of a conditional autoregressive (CAR) process. A fully Bayesian analysis of the CAR process is proposed. One advantage of this fully Bayesian analysis is that it can be implemented simply by using repeated sampling from the posterior densities. Use of a Markov chain Monte Carlo technique such as Gibbs sampler was not necessary. Direct resampling from the posterior densities provides exact small sample inferences instead of the approximate asymptotic analyses of maximum likelihood methods (Clayton & Kaldor, 1987). Further, the proposed CAR model provides for covariates to be included in the model. A simulation demonstrates the effect of sample size on the fully Bayesian analysis of the CAR process. The methods are applied to lip cancer data from Scotland, and the results are compared. ^
Resumo:
Objective: This study examined the recent trends and characteristics of reported pertussis in Harris County from 2005-2010. ^ Methods: The study population included surveillance data from all reported pertussis cases from January 1, 2005 to December 31, 2010 to Harris County Public Health and Environmental Services (HCPHES). We calculated incidence and attack rates for varying age groups, race/ethnicity, and gender. Spatial analyses were conducted of hot spot and cluster of incident cases in Harris County census tracts. Maps were constructed using geographic information system. ^ Results: Age-specific incidence rates of reported cases of pertussis were highest among infants under a year of age and lowest among adults age 20 and older. Hispanics represented the most cases reported compared to any other race or ethnic group (42% of 483 cases). Age-adjusted rates were highest in 2009 at 9.81 cases per 100,000 population. Only 31.2% of people received at least four of the recommended five doses of vaccine. Spatial analyses revealed statistically significant clusters within the northeast region of Harris County. ^ Conclusions: Hispanic infants are the most at risk group for pertussis. Although 70% of cases had a history of immunization, 41.8% of infants were appropriately vaccinated for their age. Increased vaccination coverage may decrease the incidence of pertussis.^
Resumo:
The association between fine particulate matter air pollution (PM2.5) and cardiovascular disease (CVD) mortality was spatially analyzed for Harris County, Texas, at the census tract level. The objective was to assess how increased PM2.5 exposure related to CVD mortality in this area while controlling for race, income, education, and age. An estimated exposure raster was created for Harris County using Kriging to estimate the PM2.5 exposure at the census tract level. The PM2.5 exposure and the CVD mortality rates were analyzed in an Ordinary Least Squares (OLS) regression model and the residuals were subsequently assessed for spatial autocorrelation. Race, median household income, and age were all found to be significant (p<0.05) predictors in the model. This study found that for every one μg/m3 increase in PM2.5 exposure, holding age and education variables constant, an increase of 16.57 CVD deaths per 100,000 would be predicted for increased minimum exposure values and an increase of 14.47 CVD deaths per 100,000 would be predicted for increased maximum exposure values. This finding supports previous studies associating PM2.5 exposure with CVD mortality. This study further identified the areas of greatest PM2.5 exposure in Harris County as being the geographical locations of populations with the highest risk of CVD (i.e., predominantly older, low-income populations with a predominance of African Americans). The magnitude of the effect of PM2.5 exposure on CVD mortality rates in the study region indicates a need for further community-level studies in Harris County, and suggests that reducing excess PM2.5 exposure would reduce CVD mortality.^
Resumo:
Scholars have found that socioeconomic status was one of the key factors that influenced early-stage lung cancer incidence rates in a variety of regions. This thesis examined the association between median household income and lung cancer incidence rates in Texas counties. A total of 254 individual counties in Texas with corresponding lung cancer incidence rates from 2004 to 2008 and median household incomes in 2006 were collected from the National Cancer Institute Surveillance System. A simple linear model and spatial linear models with two structures, Simultaneous Autoregressive Structure (SAR) and Conditional Autoregressive Structure (CAR), were used to link median household income and lung cancer incidence rates in Texas. The residuals of the spatial linear models were analyzed with Moran's I and Geary's C statistics, and the statistical results were used to detect similar lung cancer incidence rate clusters and disease patterns in Texas.^