2 resultados para Sovijärvi, Ava
em DigitalCommons@The Texas Medical Center
Resumo:
Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^
Resumo:
Background: Heart failure (CHF) is the most frequent and prognostically severe symptom of aortic stenosis (AS), and the most common indication for surgery. The mainstay of treatment for AS is aortic valve replacement (AVR), and the main indication for an AVR is development of symptomatic disease. ACC/AHA guidelines define severe AS as an aortic valve area (AVA) ≤1cm², but there is little data correlating echocardiogram AVA with the onset of symptomatic CHF. We evaluated the risk of developing CHF with progressively decreasing echocardiographic AVA. We also compared echocardiographic AVA with Jet velocity (V2) and indexed AVA (AVAI) to assess the best predictor of development of symptomatic CHF.^ Methods and Results: This retrospective cohort study evaluated 518 patients with asymptomatic moderate or severe AS from a single community based cardiology practice. A total of 925 echocardiograms were performed over an 11-year period. Each echocardiogram was correlated with concurrent clinical assessments while the investigator was blinded to the echocardiogram severity of AS. The Cox Proportional hazards model was used to analyze the relationship between AVA and the development of CHF. The median age of patients at entry was 76.1 years, with 54% males. A total of 116 patients (21.8%) developed new onset CHF during follow-up. Compared to patients with AVA >1.0cm², patients with lower AVA had an exponentially increasing risk of developing CHF for each 0.2cm² decrement in AVA, becoming statistically significant only at an AVA less than 0.8 cm². Also, compared to V2 and AVAI, AVA added more information to assessing risk for development of CHF (p=0.041). ^ Conclusion: In patients with normal or mildly impaired LVEF, the risk of CHF rises exponentially with decreasing valve area and becomes statistically significant after AVA falls below 0.8cm². AVA is a better predictor of CHF when compared to V2 or AVAI.^