5 resultados para Smithsonian Institution--Maps.
em DigitalCommons@The Texas Medical Center
Resumo:
Background. Excess weight and obesity are at epidemic proportions in the United States and place individuals at increased risk for a variety of chronic conditions. Rates of diabetes, high blood pressure, coronary artery disease, stroke, cancer, and arthritis are all influenced by the presence of obesity. Small reductions in excess weight can produce significant positive clinical outcomes. Healthcare organizations have a vital role to play in the identification and management of obesity. Currently, healthcare providers do not adequately diagnose and manage excess weight in patients. Lack of skill, time, and knowledge are commonly cited as reasons for non-adherence to recommended standards of care. The Chronic Care Model offers an approach to healthcare organizations for chronic disease management. The model consists of six elements that work together to empower both providers and patients to have more productive interactions: the community, the health system itself, self-management support, delivery system design, decision support, and clinical information systems. The model and its elements may offer a framework through which healthcare organizations can adapt to support, educate, and empower providers and patients in the management of excess weight and obesity. Successful management of excess weight will reduce morbidity and mortality of many chronic conditions. Purpose. The purpose of this review is to synthesize existing research on the effectiveness of the Chronic Care Model and its elements as they relate to weight management and behaviors associated with maintaining a healthy weight. Methods: A narrative review of the literature between November 1998 and November 2008 was conducted. The review focused on clinical trials, systematic reviews, and reports related to the chronic care model or its elements and weight management, physical activity, nutrition, or diabetes. Fifty-nine articles are included in the review. Results. This review highlights the use of the Chronic Care Model and its elements that can result in improved quality of care and clinical outcomes related to weight management, physical activity, nutrition, and diabetes. Conclusions. Healthcare organizations can use the Chronic Care Model framework to implement changes within their systems to successfully address overweight and obesity in their patient populations. Specific recommendations for operationalizing the Chronic Care Model elements for weight management are presented.^
Resumo:
The purpose of this study was to determine, for penetrating injuries (gunshot, stab) of the chest/abdomen, the impact on fatality of treatment in trauma centers and shock trauma units compared with general hospitals. Medical records of all cases of penetrating injury limited to chest/abdomen and admitted to and discharged from 7 study facilities in Baltimore city 1979-1980 (n = 581) were studied: 4 general hospitals (n = 241), 2 area-wide trauma centers (n = 298), and a shock trauma unit (n = 42). Emergency center and transferred cases were not studied. Anatomical injury severity, measured by modified Injury Severity Score (mISS), was a significant prognostic factor for death, as were cardiovascular shock (SBP $\le$ 70), injury type (gunshot vs stab), and ambulance/helicopter (vs other) transport. All deaths occurred in cases with two or more prognostic factors. Unadjusted relative risks of death compared with general hospitals were 4.3 (95% confidence interval = 2.2, 8.4) for shock trauma and 0.8 (0.4, 1.7) for trauma centers. Controlling for prognostic factors by logistic regression resulted in these relative risks: shock trauma 4.0 (0.7, 22.2), and trauma centers 0.8 (0.2, 3.2). Factors significantly associated with increased risk had the following relative risks by multiple logistic regression: SBP $\le$ 70 (RR = 40.7 (11.0, 148.7)), highest mISS (42 (7.7, 227)), gunshot (8.4 (2.1, 32.6)), and ambulance/helicopter transport (17.2 (1.3, 228.1)). Controlling for age, race, and gender did not alter results significantly. Actual deaths compared with deaths predicted from a multivariable model of general-hospital cases showed 3.7 more than predicted deaths in shock trauma (SMR = 1.6 (0.8, 2.9)) and 0.7 more than predicted deaths in area-wide trauma centers (SMR = 1.05 (0.6, 1.7)). Selection bias due to exclusion of transfers and emergency center cases, and residual confounding due to insufficient injury information, may account for persistence of adjusted high case fatality in shock trauma. Studying all cases prospectively, including emergency center and transferred cases, is needed. ^
Resumo:
In 1941 the Texas Legislature appropriated $500,000 to the Board of Regents of the University of Texas to establish a cancer research hospital. The M. D. Anderson Foundation offered to match the appropriation with a grant of an equal sum and to provide a permanent site in Houston. In August, 1942 the Board of Regent of the University and the Trustees of the Foundation signed an agreement to embark on this project. This institution was to be the first one in the medical center, which was incorporated in October, 1945. The Board of Trustees of the Texas Medical Center commissioned a hospital survey to: - Define the needed hospital facilities in the area - Outline an integrated program to meet these needs - Define the facilities to be constructed - Prepare general recommendations for efficient progress The Hospital Study included information about population, hospitals, and other health care and education facilities in Houston and Harris County at that time. It included projected health care needs for future populations, education needs, and facility needs. It also included detailed information on needs for chronic illnesses, a school of public health, and nursing education. This study provides valuable information about the general population and the state of medicine in Houston and Harris County in the 1940s. It gives a unique perspective on the anticipated future as civic leaders looked forward in building the city and region. This document is critical to an understanding of the Texas Medical Center, Houston and medicine as they are today. SECTIONS INCLUDE: Abstract The Abstract was a summary of the 400 page document including general information about the survey area, community medical assets, and current and projected medical needs which the Texas Medical Center should meet. The 123 recommendations were both general (e.g., 12. “That in future planning, the present auxiliary department of the larger hospitals be considered inadequate to carry an added teaching research program of any sizable scope.”) and specific (e.g., 22. That 14.3% of the total acute bed requirement be allotted for obstetric care, reflecting a bed requirement of 522 by 1950, increasing to 1,173 by 1970.”) Section I: Survey Area This section basically addressed the first objective of the survey: “define the needed hospital facilities in the area.” Based on the admission statistics of hospitals, Harris County was included in the survey, with the recognition that growth from out-lying regional areas could occur. Population characteristics and vital statistics were included, with future trends discussed. Each of the hospitals in the area and government and private health organizations, such as the City-County Welfare Board, were documented. Statistics on the facilities use and capacity were given. Eighteen recommendations and observations on the survey area were given. Section II: Community Program This section basically addressed the second objective of the survey: “outline an integrated program to meet these needs.” The information from the Survey Area section formed the basis of the plans for development of the Texas Medical Center. In this section, specific needs, such as what medical specialties were needed, the location and general organization of a medical center, and the academic aspects were outlined. Seventy-four recommendations for these plans were provided. Section III: The Texas Medical Center The third and fourth objectives are addressed. The specific facilities were listed and recommendations were made. Section IV: Special Studies: Chronic Illness The five leading causes of death (heart disease, cancer, “apoplexy”, nephritis, and tuberculosis) were identified and statistics for morbidity and mortality provided. Diagnostic, prevention and care needs were discussed. Recommendations on facilities and other solutions were made. Section IV: Special Studies: School of Public Health An overview of the state of schools of public health in the US was provided. Information on the direction and need of this special school was also provided. Recommendations on development and organization of the proposed school were made. Section IV: Special Studies: Needs and Education Facilities for Nurses Nursing education was connected with hospitals, but the changes to academic nursing programs were discussed. The needs for well-trained nurses in an expanded medical environment were anticipated to result in significant increased demands of these professionals. An overview of the current situation in the survey area and recommendations were provided. Appendix A Maps, tables and charts provide background and statistical information for the previous sections. Appendix B Detailed census data for specific areas of the survey area in the report were included. Sketches of each of the fifteen hospitals and five other health institutions showed historical information, accreditations, staff, available facilities (beds, x-ray, etc.), academic capabilities and financial information.
Resumo:
Dengue fever is a strictly human and non-human primate disease characterized by a high fever, thrombocytopenia, retro-orbital pain, and severe joint and muscle pain. Over 40% of the world population is at risk. Recent re-emergence of dengue outbreaks in Texas and Florida following the re-introduction of competent Aedes mosquito vectors in the United States have raised growing concerns about the potential for increased occurrences of dengue fever outbreaks throughout the southern United States. Current deficiencies in vector control, active surveillance and awareness among medical practitioners may contribute to a delay in recognizing and controlling a dengue virus outbreak. Previous studies have shown links between low-income census tracts, high population density, and dengue fever within the United States. Areas of low-income and high population density that correlate with the distribution of Aedes mosquitoes result in higher potential for outbreaks. In this retrospective ecologic study, nine maps were generated to model U.S. census tracts’ potential to sustain dengue virus transmission if the virus was introduced into the area. Variables in the model included presence of a competent vector in the county and census tract percent poverty and population density. Thirty states, 1,188 counties, and 34,705 census tracts were included in the analysis. Among counties with Aedes mosquito infestation, the census tracts were ranked high, medium, and low risk potential for sustained transmission of the virus. High risk census tracts were identified as areas having the vector, ≥20% poverty, and ≥500 persons per square mile. Census tracts with either ≥20% poverty or ≥500 persons per square mile and have the vector present are considered moderate risk. Census tracts that have the vector present but have <20% poverty and <500 persons per square mile are considered low risk. Furthermore, counties were characterized as moderate risk if 50% or more of the census tracts in that county were rated high or moderate risk, and high risk if 25% or greater were rated high risk. Extreme risk counties, which were primarily concentrated in Texas and Mississippi, were considered having 50% or greater of the census tracts ranked as high risk. Mapping of geographic areas with potential to sustain dengue virus transmission will support surveillance efforts and assist medical personnel in recognizing potential cases. ^