3 resultados para Small-area
em DigitalCommons@The Texas Medical Center
Resumo:
The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^
Resumo:
Health departments, research institutions, policy-makers, and healthcare providers are often interested in knowing the health status of their clients/constituents. Without the resources, financially or administratively, to go out into the community and conduct health assessments directly, these entities frequently rely on data from population-based surveys to supply the information they need. Unfortunately, these surveys are ill-equipped for the job due to sample size and privacy concerns. Small area estimation (SAE) techniques have excellent potential in such circumstances, but have been underutilized in public health due to lack of awareness and confidence in applying its methods. The goal of this research is to make model-based SAE accessible to a broad readership using clear, example-based learning. Specifically, we applied the principles of multilevel, unit-level SAE to describe the geographic distribution of HPV vaccine coverage among females aged 11-26 in Texas.^ Multilevel (3 level: individual, county, public health region) random-intercept logit models of HPV vaccination (receipt of ≥ 1 dose Gardasil® ) were fit to data from the 2008 Behavioral Risk Factor Surveillance System (outcome and level 1 covariates) and a number of secondary sources (group-level covariates). Sampling weights were scaled (level 1) or constructed (levels 2 & 3), and incorporated at every level. Using the regression coefficients (and standard errors) from the final models, I simulated 10,000 datasets for each regression coefficient from the normal distribution and applied them to the logit model to estimate HPV vaccine coverage in each county and respective demographic subgroup. For simplicity, I only provide coverage estimates (and 95% confidence intervals) for counties.^ County-level coverage among females aged 11-17 varied from 6.8-29.0%. For females aged 18-26, coverage varied from 1.9%-23.8%. Aggregated to the state level, these values translate to indirect state estimates of 15.5% and 11.4%, respectively; both of which fall within the confidence intervals for the direct estimates of HPV vaccine coverage in Texas (Females 11-17: 17.7%, 95% CI: 13.6, 21.9; Females 18-26: 12.0%, 95% CI: 6.2, 17.7).^ Small area estimation has great potential for informing policy, program development and evaluation, and the provision of health services. Harnessing the flexibility of multilevel, unit-level SAE to estimate HPV vaccine coverage among females aged 11-26 in Texas counties, I have provided (1) practical guidance on how to conceptualize and conduct modelbased SAE, (2) a robust framework that can be applied to other health outcomes or geographic levels of aggregation, and (3) HPV vaccine coverage data that may inform the development of health education programs, the provision of health services, the planning of additional research studies, and the creation of local health policies.^
Resumo:
There is scant evidence regarding the associations between ambient levels of combustion pollutants and small for gestational age (SGA) infants. No studies of this type have been completed in the Southern United States. The main objective of the project presented was to determine associations between combustion pollutants and SGA infants in Texas using three different exposure assessments. ^ Birth certificate data that contained information on maternal and infant characteristics were obtained from the Texas Department of State Health Services (TX DSHS). Exposure assessment data for the three aims came from: (1) U.S. Environmental Protection Agency (EPA) National Air Toxics Assessment (NATA), (2) U.S. EPA Air Quality System (AQS), and (3) TX Department of Transportation (DOT), respectively. Multiple logistic regression models were used to determine the associations between combustion pollutants and SGA. ^ For the first study looked at annual estimates of four air toxics at the census tract level in the Greater Houston Area. After controlling for maternal race, maternal education, tobacco use, maternal age, number of prenatal visits, marital status, maternal weight gain, and median census tract income level, adjusted ORs and 95% confidence intervals (CI) for exposure to PAHs (per 10 ng/m3), naphthalene (per 10 ng/m3), benzene (per 1 µg/m3), and diesel engine emissions (per 10 µg/m3) were 1.01 (0.97–1.05), 1.00 (0.99–1.01), 1.01 (0.97–1.05), and 1.08 (0.95–1.23) respectively. For the second study looking at Hispanics in El Paso County, AORs and 95% confidence intervals (CI) for increases of 5 ng/m3 for the sum of carcinogenic PAHs (Σ c-PAHs), 1 ng/m3 of benzo[a]pyrene, and 100 ng/m3 in naphthalene during the third trimester of pregnancy were 1.02 (0.97–1.07), 1.03 (0.96–1.11), and 1.01 (0.97–1.06), respectively. For the third study using maternal proximity to major roadways as the exposure metric, there was a negative association with increasing distance from a maternal residence to the nearest major roadway (Odds Ratio (OR) = 0.96; 95% CI = 0.94–0.97) per 1000 m); however, once adjusted for covariates this effect was no longer significant (AOR = 0.98; 95% CI = 0.96–1.00). There was no association with distance weighted traffic density (DWTD). ^ This project is the first to look at SGA and combustion pollutants in the Southern United States with three different exposure metrics. Although there was no evidence of associations found between SGA and the air pollutants mentioned in these studies, the results contribute to the body of literature assessing maternal exposure to ambient air pollution and adverse birth outcomes. ^