2 resultados para Slope efficiencies
em DigitalCommons@The Texas Medical Center
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
New methods for quantification and analysis of quantitative real-time polymerase chain reaction data
Resumo:
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^