6 resultados para Sloan, Blake
em DigitalCommons@The Texas Medical Center
Resumo:
Quantitative imaging with 18F-FDG PET/CT has the potential to provide an in vivo assessment of response to radiotherapy (RT). However, comparing tissue tracer uptake in longitudinal studies is often confounded by variations in patient setup and potential treatment induced gross anatomic changes. These variations make true response monitoring for the same anatomic volume a challenge, not only for tumors, but also for normal organs-at-risk (OAR). The central hypothesis of this study is that more accurate image registration will lead to improved quantitation of tissue response to RT with 18F-FDG PET/CT. Employing an in-house developed “demons” based deformable image registration algorithm, pre-RT tumor and parotid gland volumes can be more accurately mapped to serial functional images. To test the hypothesis, specific aim 1 was designed to analyze whether deformably mapping tumor volumes rather than aligning to bony structures leads to superior tumor response assessment. We found that deformable mapping of the most metabolically avid regions improved response prediction (P<0.05). The positive predictive power for residual disease was 63% compared to 50% for contrast enhanced post-RT CT. Specific aim 2 was designed to use parotid gland standardized uptake value (SUV) as an objective imaging biomarker for salivary toxicity. We found that relative change in parotid gland SUV correlated strongly with salivary toxicity as defined by the RTOG/EORTC late effects analytic scale (Spearman’s ρ = -0.96, P<0.01). Finally, the goal of specific aim 3 was to create a phenomenological dose-SUV response model for the human parotid glands. Utilizing only baseline metabolic function and the planned dose distribution, predicting parotid SUV change or salivary toxicity, based upon specific aim 2, became possible. We found that the predicted and observed parotid SUV relative changes were significantly correlated (Spearman’s ρ = 0.94, P<0.01). The application of deformable image registration to quantitative treatment response monitoring with 18F-FDG PET/CT could have a profound impact on patient management. Accurate and early identification of residual disease may allow for more timely intervention, while the ability to quantify and predict toxicity of normal OAR might permit individualized refinement of radiation treatment plan designs.
Resumo:
INTRODUCTION: Traumatic brain injury (TBI) frequently results in devastating and prolonged morbidity. Cellular therapy is a burgeoning field of experimental treatment that has shown promise in the management of many diseases, including TBI. Previous work suggests that certain stem and progenitor cell populations migrate to sites of inflammation and improve functional outcome in rodents after neural injury. Unfortunately, recent study has revealed potential limitations of acute and intravenous stem cell therapy. We studied subacute, direct intracerebral neural stem and progenitor cell (NSC) therapy for TBI. MATERIALS AND METHODS: The NSCs were characterized by flow cytometry and placed (400,000 cells in 50 muL 1x phosphate-buffered saline) into and around the direct injury area, using stereotactic guidance, of female Sprague Dawley rats 1 wk after undergoing a controlled cortical impact injury. Immunohistochemistry was used to identify cells located in the brain at 48 h and 2 wk after administration. Motor function was assessed using the neurological severity score, foot fault, rotarod, and beam balance. Cognitive function was assessed using the Morris water maze learning paradigm. Repeated measures analysis of variance with post-hoc analysis were used to determine significance at P < 0.05. RESULTS: Immunohistochemistry analysis revealed that 1.4-1.9% of infused cells remained in the neural tissue at 48 h and 2 wk post placement. Nearly all cells were located along injection tracks at 48 h. At 2 wk some cell dispersion was apparent. Rotarod motor testing revealed significant increases in maximal speed among NSC-treated rats compared with saline controls at d 4 (36.4 versus 27.1 rpm, P < 0.05) and 5 (35.8 versus 28.9 rpm, P < 0.05). All other motor and cognitive evaluations were not significantly different compared to controls. CONCLUSIONS: Placement of NSCs led to the cells incorporating and remaining in the tissues 2 wk after placement. Motor function tests revealed improvements in the ability to run on a rotating rod; however, other motor and cognitive functions were not significantly improved by NSC therapy. Further examination of a dose response and optimization of placement strategy may improve long-term cell survival and maximize functional recovery.
Resumo:
A discussion of nonlinear dynamics, demonstrated by the familiar automobile, is followed by the development of a systematic method of analysis of a possibly nonlinear time series using difference equations in the general state-space format. This format allows recursive state-dependent parameter estimation after each observation thereby revealing the dynamics inherent in the system in combination with random external perturbations.^ The one-step ahead prediction errors at each time period, transformed to have constant variance, and the estimated parametric sequences provide the information to (1) formally test whether time series observations y(,t) are some linear function of random errors (ELEM)(,s), for some t and s, or whether the series would more appropriately be described by a nonlinear model such as bilinear, exponential, threshold, etc., (2) formally test whether a statistically significant change has occurred in structure/level either historically or as it occurs, (3) forecast nonlinear system with a new and innovative (but very old numerical) technique utilizing rational functions to extrapolate individual parameters as smooth functions of time which are then combined to obtain the forecast of y and (4) suggest a measure of resilience, i.e. how much perturbation a structure/level can tolerate, whether internal or external to the system, and remain statistically unchanged. Although similar to one-step control, this provides a less rigid way to think about changes affecting social systems.^ Applications consisting of the analysis of some familiar and some simulated series demonstrate the procedure. Empirical results suggest that this state-space or modified augmented Kalman filter may provide interesting ways to identify particular kinds of nonlinearities as they occur in structural change via the state trajectory.^ A computational flow-chart detailing computations and software input and output is provided in the body of the text. IBM Advanced BASIC program listings to accomplish most of the analysis are provided in the appendix. ^
Resumo:
Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^