15 resultados para Site-specific Recombination
em DigitalCommons@The Texas Medical Center
Resumo:
Repression of many tumor suppressor genes (TSGs) in cancer is mediated by aberrantly increased DNA methylation levels at promoter CpG islands (CGI). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sharp transition of methylation occurs between highly methylated repetitive elements (SINE or LINE) and unmethylated CGI-promoters (e.g. P16, VHL, CDH and RIL) in normal tissues. The functions that lead to increased CGI methylation in cancer remain poorly understood. We propose that CGI-promoters contain cis-elements for triggering de novo DNA methylation. In the first part of our project, we established a site-specific integration system with enforced local transcriptional repression in colorectal cancer cells and monitored the occurrence of de novo DNA methylation in exogenous fragments containing a CGI-promoter and repetitive elements. Initial de novo methylation was seeded at specific CG sites in a repetitive element, and accelerated by persistent binding of a KRAB-containing transcriptional repressor. Furthermore, additional repetitive elements (LINE and SINE) located adjacent to the promoter could confer DNA methylation spreading into the CGI particularly in the setting of KRAB-factor binding. However, a repressive chromatin alone was not sufficient to initiate DNA methylation, which required specific DNA sequences and was integration-site (and/or cell-line) specific. In addition, all the methylation observed showed slow and gradual accumulation over several months of culture. Overall, these results demonstrate a requirement for specific DNA sequences to trigger de novo DNA methylation, and repetitive elements as cis-regulatory factors to cooperate with strengthened transcriptional repression in promoting methylation spreading. In the second part, we re-introduced disrupted DNMT3B or DNMT1 into HCT116 DKO cells and mapped the remethylation pattern through a profiling method (DREAM). Moderate remethylation occurred when DNMT3B was re-expressed with a preference toward non-CGI and non-promoter regions. Hence, there exists a set of genomic regions with priority to be targets for DNMT3B in somatic cells.
Resumo:
The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry.^ A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems. ^
Resumo:
Human x rodent somatic cell hybrids have played an important role in human genetics research. They have been especially useful for assigning genes to chromosomes and isolating DNA markers from specific regions of the human genome.^ By employing a combination of somatic cell genetic, recombinant DNA, and cytogenetic techniques, human DNA excision repair gene ERCC4 was mapped regionally to human 16p13.13-13.2, even though the gene has not been cloned. Human x Chinese hamster ovary (CHO) cell hybrids selected for human ERCC4 activity and containing 16p13.1-p13.3 as the only human genetic material were identified. These hybrids were used to order DNA markers located in 16p13.1-p13.3. New DNA markers physically close to ERCC4 were isolated from such hybrids. Using amplified human DNA from the hybrids as probe in fluorescent in situ hybridization, the short arm breakpoint in the chromosome 16 inversion associated with acute myelomonocytic leukemia (AMML) was found to be physically close to the ERCC4 gene. The physical mapping and eventually, the cloning of the ERCC4 gene, will benefit the understanding of the DNA repair system and the study of other important biomedical problems such as tumorigenesis.^ To facilitate the cloning of ERCC4 gene and, in general, the cloning of genes from any defined regions of the human genome, a method was developed for the direct isolation of human transcribed genes ffom somatic cell hybrids. cDNA was prepared from human x rodent hybrid by using consensus 5$\sp\prime$ splice site sequences as primers. These primers were designed to select immature, unspliced messenger RNA (still retaining species specific repeat sequences) as templates. Screening of a derived cDNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes. The usefulness of the splice site specific primers was analyzed and the cDNA synthesis conditions with these primers were optimized. The procedure was shown to be sensitive enough to clone weakly expressed genes. Studying the expression of the represented genes with the isolated clones was shown to be feasible. Such regional specific human gene fragments will be very valuable for many human genetic studies such as the search of inherited disease genes and the construction of a cDNA map of the human genome. ^
Resumo:
Involvement of E. coli 23S ribosomal RNA (rRNA) in decoding of termination codons was first indicated by the characterization of a 23S rRNA mutant that causes UGA-specific nonsense suppression. The work described here was begun to test the hypothesis that more 23S rRNA suppressors of specific nonsense mutations can be isolated and that they would occur non-randomly in the rRNA genes and be clustered in specific, functionally significant regions of rRNA.^ Approximately 2 kilobases of the gene for 23S rRNA were subjected to PCR random mutagenesis and the amplified products screened for suppression of nonsense mutations in trpA. All of the suppressor mutations obtained were located in a thirty-nucleotide part of the GTPase center, a conserved rRNA sequence and structure, and they and others made in that region by site-directed mutagenesis were shown to be UGA-specific in their suppression of termination codon mutations. These results proved the initial hypothesis and demonstrated that a group of nucleotides in this region are involved in decoding of the UGA termination codon. Further, it was shown that limitation of cellular availability or synthesis of L11, a ribosomal protein that binds to the GTPase center rRNA, resulted in suppression of termination codon mutations, suggesting the direct involvement of L11 in termination in vivo.^ Finally, in vivo analysis of certain site-specific mutations made in the GTPase center RNA demonstrated that (a) the G$\cdot$A base pair closing the hexanucleotide hairpin loop was not essential for normal termination, (b) the "U-turn" structure in the 1093 to 1098 hexaloop is critical for normal termination, (c) nucleotides A1095 and A1067, necessary for the binding to ribosomes of thiostrepton, an antibiotic that inhibits polypeptide release factor binding to ribosomes in vitro, are also necessary for normal peptide chain termination in vivo, and (d) involvement of this region of rRNA in termination is determined by some unique subset structure that includes particular nucleotides rather than merely by a general structural feature of the GTPase center.^ This work advances the understanding of peptide chain termination by demonstrating that the GTPase region of 23S rRNA participates in recognition of termination codons, through an associated ribosomal protein and specific conserved nucleotides and structural motifs in its RNA. ^
Resumo:
Cytokine-induced transcription of the serum amyloid A3 (SAA3) gene promoter requires a transcriptional enhancer that contains three functional elements: two C/EBP-binding sites and a third site that interacts with a constitutively expressed transcription factor, SAA3 enhancer factor (SEF). Deletion or site-specific mutations in the SEF-binding site drastically reduced SAA3 promoter activity, strongly suggesting that SEF is important in SAA3 promoter function. To further elucidate its role in the regulation of the SAA3 gene, we purified SEF from HeLa cell nuclear extracts to near homogeneity by using conventional liquid chromatography and DNA-affinity chromatography. Ultraviolet cross-linking and Southwestern experiments indicated that SEF consisted of a single polypeptide with an apparent molecular mass of 65 kDa. Protein sequencing, oligonucleotide competition and antibody supershift experiments identified SEF as transcription factor LBP-1c/CP2/LSF. Cotransfection of SEF expression plasmid with SAA3-luciferase reporter resulted in 3- to 5-fold activation of SAA3 promoter. Interestingly, when SEF-transfected cells were treated with either conditioned medium (CM) or interleukin (IL) 1, the SAA3 promoter was synergistically activated in a dose-dependent manner. Furthermore, when SEF-binding site was mutated, the response of SAA3 promoter to IL-1 or CM stimulation was abolished or drastically decreased, suggesting that SEF may functionally cooperate with an IL-1-inducible transcription factor. Indeed, our functional studies showed that NFκB is a key transcription factor that mediates the IL-1-induced expression of SAA3 gene, and that SEF can synergize with NFκBp65 to activate SAA3 promoter. By coimmunoprecipitation experiments, we found that SEF could specifically interact with NFκBp65, and that the association of these two factors was enhanced upon IL-1 and CM stimulation. This suggests that the molecular basis for the functional synergy between SEF and NFκB may be due to the ability of SEF to physically interact with NPκB. In addition to its interaction with SEF, NFκB-dependent activation also requires the weak κB site in the C element and its interaction with C/EBP. Besides its role in regulating SAA3 gene expression, we provide evidence that SEF could also bind in a sequence-specific manner to the promoters of α2-macroglobulin, Aα fibrinogen, and 6–16 genes and to an intronic enhancer of the human Wilm's tumor 1 gene, suggesting a functional role in the regulation of these genes. By coimmunoprecipitation experiments, we determined that SEF could specifically associate with both Stat3 and Stat2 upon cytokine stimulation. To examine the functional roles of such interactions, we evaluated the effects of SEF on the transcriptional regulation of two reporter genes: Aα fibrinogen and 6–16, which are IL-6- and interferon-α-responsive, respectively. Our results showed that cotransfection of SEF expression plasmid can activate the expression of Aα fibrinogen gene and 6–16 gene. Moreover, SEF can dramatically enhance the interferon-α-induced expression of 6–16 gene and IL-6-induced expression of Aα fibrinogen gene, suggesting that SEF may functionally cooperate with ISGF3 and Stat3 to mediate interferon-α and IL-6 signaling. ^ Our findings that SEF can interact with multiple cytokine-inducible transcription factors to mediate the expression of target genes open a new avenue of investigation of cooperative transcriptional regulation of gene expression, and should further our understanding of differential gene expression in response to a specific stimulus. In summary, our data provide evidence that SEF can mediate the signaling of different cytokines by interacting with various cytokine-inducible transcription factors. ^
Resumo:
Inbred strains of three species of fishes of the genus Xiphophorus (platyfish and swordtails) were crossed to produce intra- and interspecific F(,1) hybrids, which were then backcrossed to one or both parental stocks. Backcross hybrids were used for the analysis of segregation and linkage of 33 protein-coding loci (whose products were visualized by starch gel electrophoresis) and a sex-linked pigment pattern gene. Segregation was Mendelian for all loci with the exception of one instance of segregation distortion. Six linkage groups of enzyme-coding loci were established: LG I, ADA --6%-- G(,6)PD --24%-- 6PGD; LG II, Est-2 --27%-- Est-3 --0%-- Est-5 --23%-- LDH-1 --16%-- MPI; LG III, AcPh --38%-- G(,3)PD-1 (GUK-2 --14%-- G(,3)PD-1 is also in LG III, but the position of GUK-2 with respect to AcPh has not yet been determined); LG IV, GPI-1 --41%-- IDH-1; LG V, Est-1 --38%-- MDH-2; and LG VI, P1P --7%-- UMPK-1 (P1P is a plasma protein, very probably transferrin).^ Sex-specific recombination appeared absent in LG II and LG IV locus pairs; significantly higher male recombination was demonstrated in LG I but significantly higher female recombination was detected in LG V. Only one significant population-specific difference in recombination was detected, in the G(,6)PD - 6PGD region of LG I; the notable absence of such effects implies close correspondence of the genomes of the species used in the study. Two cases of possible evolutionary conservation of linkage groups in fishes and mammals were described, involving the G(,6)PD - 6PGD linkage in LG I and the cluster of esterase loci in LG II. One clear case of divergence was observed, that of the linkage of ADA in LG I. It was estimated that a minimum of (TURN)50% of the Xiphophorus genome was marked by the loci studied. Therefore, the prior probability that a new locus will assort independently from the markers already established is estimated to be less than 0.5. A maximum of 21 of the 24 pairs of chromosomes could be marked with at least one locus.^ Only the two LG V loci showed a significant association with a postulated gene controlling the severity of a genetically controlled melanoma caused by abnormal proliferation of macromelanophore pigment pattern cells. The independence of melanotic severity from all other informative markers implies that one or at most a few major genes are involved in control of melanotic severity in this system. ^
Resumo:
Sensitive assays utilizing a cell-free and an intracellular system were employed to study the molecular bases of the DNA-damaging reactions of neocarzinostatin (NCS). In the cell-free DNA system, super-helical form I DNA from the bacteriophage PM2 was used as the substrate. The three forms of DNA present after treatment with NCS were separated by agarose gel electrophoresis. When NCS-damaged DNA was assayed under neutral conditions, there was a progressive decrease in the amount of surviving form I DNA and a corresponding increase in form II (nicked, relaxed circular) DNA, but very little increase in form III (linear duplex) DNA. This indicates that NCS introduces primarily single-strand breaks. However later studies showed that there were some site-specific double-strand breaks mediated by NCS on PM2 DNA. Seven such specific sites were mapped on the PM2 genome. When the damage was assayed under nondenaturing alkaline conditions or with the apurinic/apyrimidinic endonuclease IV, there was a slightly greater decrease in the amount of surviving form I DNA compared with neutral conditions indicating the presence of some alkali-labile sites.^ NCS-mediated DNA damage and repair were examined with cultured Chinese hamster ovary (CHO) cells using either alkaline elution for analysis of single-strand breaks or neutral elution for analysis of double-strand breaks. Most of the strand breaks introduced by NCS were capable of being rejoined. However, there was a small amount of residual DNA damage remaining unrejoined at 24-hr after removal of the drug. The amount of residual DNA damage was higher in a CHO mutant cell line (EM9) having a higher sensitivity to killing by NCS than its parental strain (AA8). Other lesions, DNA-protein complexes and alkali-labile sites, were detected after NCS treatment but they constituted only a small fraction of the DNA damage.^ Based on the above information, it can be postulated that NCS introduces some very lethal DNA damage. It is likely that the lethal lesions are a subset of the total DNA lesions representing the residual DNA damage. This DNA damage may be composed of site-specific, unrejoinable double-strand breaks and are thus the primary lesion leading to NCS-mediated lethality.^
Resumo:
To understand how a eukaryote achieves differential transcription of genes in precise spatial patterns, the molecular details of tissue specific expression of the Strongylocentrotus purpuratus Spec2a gene were investigated by functional studies of the cis-regulatory components in the upstream enhancer. Regional activation of Spec2a in the aboral ectoderm is conferred by a combination of activators and repressors. The positive regulators include previously identified SpOtx and a trans-regulatory factor binding at the CCAAT site in the Spec2a enhancer. The nuclear protein binding to the CCAAT box was determined to be the heterotrimeric CCAAT binding factor (SpCBF). SpCBF also mediates general activation in the ectoderm. The negative regulators consist of an oral ectoderm repressor (OER), an endoderm repressor (ENR), and an S. Purpuratus goosecoid homologue (SpGsc). OER functions to prevent expression in the oral ectoderm, while ENR is required to repress endoderm expression. SpGsc antagonizes the SpOtx function by competing for binding at SpOtx target genes in oral ectoderm, where it functions as an active repressor. Thus, SpOtx and SpGsc perform collectively to establish and maintain the oral-aboral axis. Finally, purification of ENR and OER proteins from sea urchin blastula stage nuclear extracts was performed using site-specific DNA-affmity chromatography. ^
Resumo:
DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^
Resumo:
In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^
Resumo:
Neuropathic pain is a debilitating neurological disorder that may appear after peripheral nerve trauma and is characterized by persistent, intractable pain. The well-studied phenomenon of long-term hyperexcitability (LTH), in which sensory somata become hyperexcitable following peripheral nerve injury may be important for both chronic pain and long-lasting memory formation, since similar cellular alterations take place after both injury and learning. Though axons have previously been considered simple conducting cables, spontaneous afferent signals develop from some neuromas that form at severed nerve tips, indicating intrinsic changes in sensory axonal excitability may contribute to this intractable pain. Here we show that nerve transection, exposure to serotonin, and transient depolarization induce long-lasting sensory axonal hyperexcitability that is localized to the treated nerve segment and requires local translation of new proteins. Long-lasting functional plasticity may be a general property of axons, since both injured and transiently depolarized motor axons display LTH as well. Axonal hyperexcitability may represent an adaptive mechanism to overcome conduction failure after peripheral injury, but also displays key features shared with cellular analogues of memory including: site-specific changes in neuronal function, dependence on transient, focal depolarization for induction, and requirement for synthesis of new proteins for expression of long-lasting effects. The finding of axonal hyperexcitability after nerve injury sheds new light on the clinical problem of chronic neuropathic pain, and provides more support for the hypothesis that mechanisms of long-term memory storage evolved from primitive adaptive responses to injury. ^
Resumo:
Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition
Resumo:
The regulation of muscle differentiation, like cell differentiation in general, is only now beginning to be understood. Here are described several key features to myogenesis: a beginning, some intermediary events, and an endpoint. Muscle differentiation proceeds spontaneously when myoblasts are cultured in serum-poor medium. Transforming growth factor type $\beta$ (TGF$\beta$), a component of fetal serum, was found to potently suppress muscle differentiation. Prolonged blockade of differentiation required replenishing TGF$\beta$. When TGF$\beta$ was removed, cells rapidly differentiated. Both TGF$\beta$ and RAS, which also blocks myogenesis, suppress the genes for a series of muscle-specific proteins. Regions that regulate transcription of one such gene, muscle creatine kinase (mck), were located by linking progressively smaller parts of the mck 5$\sp\prime$ region to the marker gene cat and testing the constructs for regulated expression of cat in myoblasts and muscle cells. The mck promoter is not muscle-specific but requires activation. Two enhancers were found: a weak, developmentally regulated enhancer within the first intron, and a strong, compact, and tightly developmentally regulated enhancer about 1.2 Kb upstream of the transcription start site. Activity of this enhancer is eliminated by activated ras. Suppression of activated N-RAS restores potency to the upstream enhancer. Further deletion shows the mck 5$\sp\prime$ enhancer to contain an enhancer core with low but significant muscle-specific activity, and at least one peripheral element that augments core activity. The core and this peripheral element were comprised almost entirely of factor-binding motifs. The peripheral element was inactive as a single copy, but was constitutively active in multiple copies. Regions flanking the peripheral element augmented its activity and conferred partial muscle-specificity. The enhancer core is also modulated by its 5$\sp\prime$ flanking region in a complex manner. Site-specific mutants covering most of the enhancer core and interesting flanking sequences have been made; all mutants tested diminish the activity of the 5$\sp\prime$ enhancer. Alteration of the site to which MyoD1 is reported to bind completely inactivates the enhancer. A theoretical analysis of cooperativity is presented, through which the binding of a constitutively expressed nuclear factor is shown to have weak positive cooperativity. In summary, TGF$\beta$, RAS, and enhancer-binding factors are found to be initial, intermediary, and final regulators, respectively, of muscle differentiation. ^
Resumo:
Calcium/calmodulin-dependent protein kinase II (CaM kinase) is a multifunctional Ser/Thr protein kinase, that is highly enriched in brain and is involved in regulating many aspects of neuronal function. We observed that forebrain CaM kinase from crude homogenates, cytosolic fractions and purified preparations inactivates and translocates into the particulate fraction following autophosphorylation. Using purified forebrain CaM kinase as well as recombinant $\alpha$ isozyme, we determined that the formation of particulate enzyme was due to enzyme self-association. The conditions of autophosphorylation determine whether enzyme self-association and/or inactivation will occur. Self-association of CaM kinase is sensitive to pH, ATP concentration, and enzyme autophosphorylation. This process is prevented by saturating concentrations of ATP. However, in limiting ATP, pH is the dominant factor, and enzyme self-association occurs at pH values $\rm{<}7.0.$ Site-specific mutants were produced by substituting Ala for Thr286, Thr253, or Thr305,306 to determine whether these sites of autophosphorylation affect enzyme inactivation and self-association. The only mutation that influenced these processes was Ala286, which removed the protective effect afforded by autophosphorylation in saturating ATP. Enzyme inactivation occurs in the presence and absence of self-association and appears predominantly sensitive to nucleotide concentration, because saturating concentrations of $\rm Mg\sp{2+}/ADP$ or $\rm Mg\sp{2+}/ATP$ prevent this process. These data implicate the ATP binding pocket in both inactivation and self-association. We also observed that select peptide substrates and peptide inhibitors modeled after the autoregulatory domain of CaM kinase prevented these processes. The $\alpha$ and $\beta$ isozymes of CaM kinase were characterized independently, and were observed to exhibit differences in both enzyme inactivation and self-association. The $\beta$ isozyme was less sensitive to inactivation, and was never observed to self-associate. Biophysical characterization, and transmission electron microscopy coupled with image analysis indicated both isozymes were multimeric, however, the $\alpha$ and $\beta$ isozymes appeared structurally different. We hypothesize that the $\alpha$ subunit of CaM kinase plays both a structural and enzymatic role, and the $\beta$ subunit plays an enzymatic role. The ramifications for the functional differences observed for inactivation and self-association are discussed based on potential structural differences and autoregulation of the $\alpha$ and $\beta$ isozymes in both calcium-induced physiological and pathological processes. ^
Resumo:
The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use. ^