5 resultados para Single overhead rate

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. This research study had two goals: (1) to describe resource consumption patterns for Medi-Cal children with cystic fibrosis, and (2) to explore the feasibility from a rate design perspective of developing specialized managed care plans for such a special needs population.^ Background. Children with special health care needs (CSHN) comprise about 2% of the California Medicaid pediatric population. CSHN have rare but serious health problems, such as cystic fibrosis. Medicaid programs, including Medi-Cal, are enrolling more and more beneficiaries in managed care to control costs. CSHN, however, do not fit the wellness model underlying most managed care plans. Child health advocates believe that both efficiency and quality will suffer if CSHN are removed from regionalized special care centers and scattered among general purpose plans. They believe that CSHN should be "carved out" from enrollment in general plans. One alternative is the Specialized Managed Care Plan, tailored for CSHN.^ Methods. The study population consisted of children under age 21 with CF who were eligible for Medi-Cal and California Children's Services program (CCS) during 1991. Health Care Financing Administration (HCFA) Medicaid Tape-to-Tape data were analyzed as part of a California Children's Hospital Association (CCHA) project.^ Results. Mean Medi-Cal expenditures per month enrolled were $2,302 for 457 CF children, compared to about \$1,270 for all 47,000 CCS special needs children and roughly $60 for almost 2.6 million ``regular needs'' children. For CF children, inpatient care (80\%) and outpatient drugs (9\%) were the major cost drivers, with {\it all\/} outpatient visits comprising only 2\% of expenditures. About one-third of CF children were eligible due to AFDC (Aid to Families with Dependent Children). Age group explained about 17\% of all expenditure variation. Regression analysis was used to select the best capitation rate structure (rate cells by age and eligibility group). Sensitivity analysis estimated moderate financial risk for a statewide plan (360 enrollees), but severe risk for single county implementation due to small numbers of children.^ Conclusions. Study results support the carve out of CSHN due to unique expenditure patterns. The Specialized Managed Care Plan concept appears feasible from a rate design perspective given sufficient enrollees. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to create a mailable and OSLD-based phantom with accuracy suitable for RPC audits of HDR brachytherapy sources at institutions participating in NCI-funded cooperative clinical trials. An 8 × 8 × 10 cm3 prototype with two slots capable of holding nanoDot Al2O3:C OSL dosimeters (Landauer, Glenwood, IL) was designed and built. The phantom has a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. Irradiations were performed with an 192Ir HDR source to determine correction factors for linearity with dose, dose rate, and the combined effect of irradiation energy and phantom construction. The uncertainties introduced by source positioning in the phantom and timer resolution limitations were also investigated. It was found that the linearity correction factor was where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters under 60Co irradiation. There was no significant dose rate effect. Separate energy+block correction factors were determined for both models of 192Ir sources currently in clinical use and these vendor-specific correction factors differed by almost 2.6%. For Nucletron sources, this correction factor was 1.026±0.004 (99% Confidence Interval) and for Varian sources it was 1.000±0.007 (99% CI). Reasonable deviations in source positioning within the phantom and the limited resolution of the source timer had insignificant effects on the ability to measure dose. Overall measurement uncertainty of the system was estimated to be ±2.5% for both Nucletron and Varian source audits (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of eight participating institutions resulted in an average RPC-to-institution dose ratio of 1.000 with a standard deviation of 0.011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CHARACTERIZATION OF THE COUNT RATE PERFORMANCE AND EVALUATION OF THE EFFECTS OF HIGH COUNT RATES ON MODERN GAMMA CAMERAS Michael Stephen Silosky, B.S. Supervisory Professor: S. Cheenu Kappadath, Ph.D. Evaluation of count rate performance (CRP) is an integral component of gamma camera quality assurance and measurement of system dead time (τ) is important for quantitative SPECT. The CRP of three modern gamma cameras was characterized using established methods (Decay and Dual Source) under a variety of experimental conditions. For the Decay method, input count rate was plotted against observed count rate and fit to the paralyzable detector model (PDM) to estimate τ (Rates method). A novel expression for observed counts as a function of measurement time interval was derived and the observed counts were fit to this expression to estimate τ (Counts method). Correlation and Bland-Altman analysis were performed to assess agreement in estimates of τ between methods. The dependencies of τ on energy window definition and incident energy spectrum were characterized. The Dual Source method was also used to estimate τ and its agreement with the Decay method under identical conditions and the effects of total activity and the ratio of source activities were investigated. Additionally, the effects of count rate on several performance metrics were evaluated. The CRP curves for each system agreed with the PDM at low count rates but deviated substantially at high count rates. Estimates of τ for the paralyzable portion of the CRP curves using the Rates and Counts methods were highly correlated (r=0.999) but with a small (~6%) difference. No significant difference was observed between the highly correlated estimates of τ using the Decay or Dual Source methods under identical experimental conditions (r=0.996). Estimates of τ increased as a power-law function with decreasing ratio of counts in the photopeak to the total counts and linearly with decreasing spectral effective energy. Dual Source method estimates of τ varied as a quadratic with the ratio of the single source to combined source activities and linearly with total activity used across a large range. Image uniformity, spatial resolution, and energy resolution degraded linearly with count rate and image distorting effects were observed. Guidelines for CRP testing and a possible method for the correction of count rate losses for clinical images have been proposed.